Emerald:

An Object-Based Language for Distributed Programming

by

Norman C. Hutchinson

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

1987

University of Washington

Abstract

Emerald:

An Object-Based Language for Distributed Programming

by Norman C. Hutchinson

Chairperson of the Supervisory Committee: Professor Henry M. Levy
Department of Computer Science

Distributed systems have become more common, however constructing distributed ap-
plications remains a very difficult task. Numerous operating systems and programming
languages have been proposed that attempt to simplify the programming of distributed ap-
plications. We present a programming language called Emerald that simplifies distributed
programming by extending the concepts of object-based languages to the distributed en-
vironment.

Emerald supports a single model of computation: the object. Emerald objects include
private entities such as integers and Booleans, as well as shared, distributed entities such
as compilers, directories, and entire file systems. Emerald objects may move between ma-
chines in the system, but object invocation is location independent. The uniform semantic
model used for describing all Emerald objects makes the construction of distributed appli-
cations in Emerald much simpler than in systems where the differences in implementation
between local and remote entities are visible in the language semantics.

Emerald incorporates a type system that deals only with the specification of objects —
ignoring differences in implementation. Thus two different implementations of the same
abstraction may be freely mixed in an Emerald program.

Emerald has been implemented. The compiler accepts the responsibility of providing
an efficient implementation from object definitions, generating multiple implementations
tuned to different usage patterns from the same source code. We discuss these implemen-
tation considerations and provide performance data to justify our claim that Emerald can
be efficiently implemented.

Table of Contents

Chapter 1: Introduction L 1
1.1 Background L 1

1.2 Review of other work L 3
1.2.1 Operating systems oo 3

1.2.2 Programming languages 7

1.3 Motivation for Emerald L oo oo 10
1.4 Planofaction L 11
Chapter 2: Overview of Emerald 14
2.1 Invocation L 15
2.2 Abstract types 16
2.3 Object creation L e 19
2.4 Supporting multiple implementations 0oL 20
2.5 Distribution 23
2.6 SUMMATY o v e e e e e e e e e e e e e 24
Chapter 3: Types. o o e e e e e 25
3.1 What are types? 25
3.2 The purpose of programming language types 26
3.3 What should typesdo? 29
3.4 Requirements for Emerald’s type system 31
3.5 Abstract types L 33
3.5.1 Informal definition of Emerald’s type system 33

3.5.2 Formal definition of Emerald’s type system 35

3.5.3 Types form a lattice oL 40

3.5.4 Discussion e e e e e 41

3.6 Typesareobjects e 42
3.7 Static typing e 43
3.8 Polymorphism 44
3.8.1 Afirsttry 44

3.8.2 Asecondtry 48

3.8.3 Formal definition of polymorphism 49

3.9 ComparisSon e e e e e 50

.10 Summary e e e e e e e e e e e 50
Chapter 4: Objects o e 52
4.1 Object definition and creation oL L. 52
4.1.1 Abitofhistory 52

4.1.2 Object constructors L 54

4.2 Objects as types e e 57
Chapter 5: Other Features of Emerald 62
5.1 Location dependent operations 62
5.2 Callby move e 64
5.3 Reliability and availability 00000 65
5.4 Protection L 67
5.5 CONCUITENCY .« . v v v v et e et e e e e e e e e e e e 68
5.6 Summary L L e e e e 68
Chapter 6: The Cost of Abstraction 69
6.1 Getting rid of abstract typeso o oo 71
6.1.1 Determining concrete types 74

6.1.2 The concrete type determination algorithm 75

6.2 Making objects local o 80
6.2.1 Determining locality 81

6.2.2 The local object determination algorithm 82

6.3 A better algorithm 84
6.4 Discussion Lo e e e e 85
Chapter 7: Performance e 87
7.1 Performance goals 87
7.2 Emerald performance. Lo Lo 89
7.2.1 Discussiono e e e e e e 90

7.3 Concrete type and locality determination 91
7.3.1 Success of our algorithm 92

7.3.2 Discussion oo e e 94

T4 SUMMAry oo e e e e e e e e e e 95
Chapter 8: Conclusion 0 e 96
8.1 Contributions L 97
8.2 Furtherresearch 98
8.3 Summary e e e 101
Bibliography 103

iii

List of Figures

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4

6.1
6.2
6.3
6.4

Example abstract types and object implementations 17
A oneEntryDirectory objecto 20
A oneEntryDirectory creator Lo oL 21
A polymorphicstack oL 45
A polymorphic sorted collectiono 46
Smalltalk instance/class/metaclass structure 56
Emerald object/creator structure oL o7
A typed directory creator creator 58
TypedDirectory with getSignature 60
Directory L 73
A record-like object 75
Concrete type determination example 7

Concrete type determination example — dependency graph 7

List of Tables

1.1

7.1
7.2
7.3
74
7.5
7.6

Models of computation 13
MicroVax II primitive operation times 89
Timings of Emerald invocations 90
Performance of three detection algorithms — mail system 92
Performance of three detection algorithms — user interface 93
Overall frequency of invocations by type 94

Frequency of invocations by type — discounting input/output 95

Chapter 1

Introduction

Distributed computing systems are commonplace, and a number of operating systems and
programming languages have been proposed to simplify the construction of distributed
applications. Distributed applications typically require the sharing of data between remote
entities. Existing systems and languages have either prohibited such sharing, or else
provided two levels of support, one for private data and a separate one for shared data.
This dissertation proposes (1) that supporting a uniform object model appropriate for both
private and shared data is a powerful tool for simplifying the construction of distributed
applications, and (2) that such an object model can be implemented efficiently.

The thesis will be proven by presenting a programming language, Emerald, designed
to support a single object model, and by showing the positive effect that the model has on
other aspects of the language design. We also demonstrate that applications are simple

to construct in the language, and that the language can be efficiently implemented.

1.1 Background

We define a distributed system as a collection of autonomous computers connected by a
local area network. This definition includes such things as office automation systems and
computer networks in university computer science (and other) departments, but specifi-

cally excludes computers connected by long-haul networks as well as multiprocessors. We,

also assume that the processes making up the system are homogeneous — some thoughts
on accommodating heterogeneous systems will be made in Section 8.2.

We use the terms machine, node, computer, and processor interchangeably to refer to
the computing elements that make up the system.

Distributed systems as we have defined them are characterized by three common traits:
1. The individual processors that make up the system may fail independently.

2. Network communication is expensive relative to communication within a single pro-

Ccessor.

3. Network communication is unreliable. The network typically allows messages to be
lost or duplicated in transit, but guarantees (to a high probability) that messages

will not be undetectably corrupted in transit.

Since the component processors of the system may fail independently, a distributed system
has the potential of providing improved availability to its clients. So long as required
data is on a machine that is up, a client can proceed with his work even though other
components of the system are down. However, this potential for added availability exacts
a price; the programming of applications on a distributed system is more complicated than
the programming of applications on a centralized system in several ways.

First, applications are forced to deal with a partially available collection of processors.
At any instant only a subset of the processors in the network are up, and this subset
changes dynamically as processors crash and recover. In a centralized system, partial
availability is impossible since all components of the system fail and recover at the same
time.

Second, distributed applications must deal with network communication which has
different semantics from local communication. Locally, entities can communicate through
shared memory. At the network level there is no shared memory; the network provides

as communication primitives only message sending and receiving. Furthermore, messages

accepted for network delivery are not guaranteed to be delivered. Messages can be delayed
for arbitrary periods of time, they can be lost and never delivered, or they can be delivered

multiple times.

1.2 Review of other work

The construction of distributed applications requires support from the language, the op-
erating system, or both. Historically, dealing with inter-computer communication has
been the task of operating systems. Programmers of distributed applications typically
programmed in sequential languages and made use of operating system routines to send
messages, receive messages, or inquire about the status of the processors that make up
the system.

Not too long ago, concurrent programs were written in the same manner, with appli-
cation programmers writing in sequential languages utilizing operating system routines to
manage the creation and destruction of processes as well as mutual exclusion and syn-
chronization between these processes. The advent of concurrent programming languages
such as Concurrent Pascal [BH79], CSP [HoaT78], and Mesa [MMS79] greatly simplified
the construction of concurrent programs by providing mechanisms for achieving mutual
exclusion (through monitors or conditional critical regions) and synchronization (through
condition variables, semaphores or synchronous message passing). Recent proposals for
distributed programming languages have attempted to achieve a similar simplification in
the construction of distributed applications. In reviewing previous efforts to address the
issues of distributed computing, we will therefore examine both operating system and

programming language approaches.
1.2.1 Operating systems

In general, distributed operating systems have attempted to provide mechanisms for dis-

tributed computing that are independent of particular programming languages and there-

fore universally applicable.

Hydra [WCC™74] was an object-based operating system designed for the C.mmp com-
puter at Carnegie-Mellon University. While C.mmp is a multiprocessor rather than a
distributed system, the design of Hydra greatly influenced the designs of later distributed
systems. Every Hydra entity is an object and is addressed by a capability that includes a
reference to the object as well as a set of rights for performing operations on the object.
The system directly supports objects and includes primitives to create new objects and
new object types and perform operations on objects addressed by capabilities. Procedures,
local name spaces (activation records), and processes are implemented as kernel defined
object types.

The STAROS operating system [JJDT79] was implemented at Carnegie-Mellon Univer-
sity in the late 70’s as the operating system for the cM* multi-microprocessor computer.
It extends the ideas of the Hydra design to more efficiently support many small typed
objects named by capabilities.

In addition to its support for passive objects, STAROS also supports cooperating, com-
municating processes organized as task forces which are the active entities in the system;
processes are not objects. Process communication and synchronization are performed
by accessing shared objects. In contrast to Hydra, where invocations are normally syn-
chronous, a STAROS invocation is normally executed in a newly created process in parallel
with its invoker; the invoking process may choose if and when it will await a reply from
the invoked function.

The Eden system [AH85, Bla85] was constructed at the University of Washington
between 1980 and 1985. Eden extends the concepts of Hydra and STAROS to distributed
systems and is an integrated, distributed, object-based operating system. Eden objects are
named by capabilities and may contain multiple processes. In addition, objects are mobile;
they may migrate from machine to machine in the network. Despite this, invocation of an

operation on an object is location-independent.

A programming language for constructing Eden objects was also developed; it is dis-
cussed in Section 1.2.2.

While DEMOS [BHM77], the operating system for the CRAY-1 computer developed
at the Los Alamos Scientific Laboratory, is not distributed, it introduced ideas found in
a large number of later distributed systems. It is primarily a message-passing system,
supporting tasks, or processes, and one-way communication channels known as links.

Communication over links is primarily asynchronous, with a non-blocking send primi-
tive and a receive primitive that can be either blocking, non-blocking, or interrupt-driven.
The kernel also supports a call primitive that combines the three operations of link cre-
ation, message sending, and reply receipt.

The DEMOS idea of supporting links as the primary mechanism for communication
was extended to a distributed environment in the design of the DEMOS/MP operating
system [PM83]. DEMOS/MP has all the facilities of the original DEMOS design, allowing
users to access the distributed computing system in the same manner as the original
centralized system. In addition, DEMOS/MP allows for processes to migrate within the
network to perform load sharing.

The V system [CZ83] developed by David Cheriton at Stanford University is an ex-
tension of the earlier Thoth single machine operating system [CMMS79] to a distributed
environment. Both Thoth and V owe their model of computation to DEMOS. V sup-
ports processes that communicate primarily through message passing. V supports only
synchronous communication of small fixed size (32 byte) messages. The communication
primitives are send which sends a message to a specified process and blocks until a reply
is received, receive which blocks until a message can be received, reply, which replies to a
message overwriting the original contents of the send buffer, and forward, which forwards
a previously received message to another process. In addition, V allows processes execut-
ing in the same feam to communicate using shared memory in a completely uncontrolled

manner.

A number of later operating systems, including RIG, Accent, Mach, and Amoeba,
combine aspects of the architecture of both Hydra and DEMOS. Each of them support
process and message passing at the lowest layer, on top of which is constructed an object
management system.

Rochester’s Intelligent Gateway or RIG [LGFR82] was an early attempt to build a
general purpose distributed operating system for a network that included more than one
kind of machine. There are two ways to look at the model of computation that the
system supported. At the highest level of abstraction, the system consists of a number
of resources (or objects) that are managed by servers. These resources are accessible
to clients via invocation of operations defined by the servers. Resources are protected
from direct manipulation by clients, so the system has much of the flavor of object-based
systems like Hydra and STAROS. However, the protection mechanism in RIG is different
from that used in object-based systems. In RIG the server gives out handles for resources
but maintains the resource data privately. The client can gain access to the resource only
by making requests of the server.

At the lowest level, a RIG system consists of processes that communicate via messages.
The message communication system provides for synchronous or asynchronous message
sending and receipt, as well as an emergency message system for handling high priority
messages. Messages are addressed by the pair <process number, port number>. Both
the process number and port number are local. Process numbers are relative to the
machine the process is on, and port numbers are relative to the process that owns the port.
Processes on remote machines are addressed by creating a local alias to the remote process
number. Once such aliases have been created, interprocess communication is both network
and machine transparent. That is, a process need not be concerned about the location of
the target process nor the kind of machine that it is executing on to communicate with
it. However, the creation of local aliases is the responsibility of the programmer; it is not

handled automatically by the system. Some processes in the system are viewed as clients

and others as servers, but they are indistinguishable at the lower level.

The Accent operating system [RR81] is a successor of the RIG system. Like RIG, the
system provides processes and both synchronous and asynchronous communication. In
addition, the operating system supports ports, which are protected kernel objects to which
messages are addressed. Processes are allowed to manipulate ports only by using process-
local port identifiers. This extension of the message system allows for more protection,
as ports cannot be fabricated easily. In addition, since ports identifiers can be translated
by the kernel when sent in messages, the scheme allows ports to be used to name services
independent of the process which implements the service.

The latest version of Accent is named Mach [JR86], and has extended the ideas in
Accent to a distributed environment composed of multi-processors. Mach has also achieved
a considerable simplification of the notions of both process and message passing over
Accent.

The Amoeba system [TvR85] presents the user with a model similar to that of RIG,
although the underlying architecture is quite different. The kernel of the operating system
provides only synchronous inter-process communication. At a higher level of abstraction,
the system consists of a number of servers that manage objects named by capabilities; the

objects are accessible only through the invocation of operations.
1.2.2 Programming languages

In addition to operating system efforts to simplify the construction of distributed appli-
cations, a number of programming languages have been designed with this goal in mind.
Like the distributed operating systems just described, these may be broadly categorized
by whether they support processes or objects as their primary computation model.

CSP is Hoare’s proposal for structuring distributed applications as groups of com-
municating sequential processes [Hoa78]. It was originally a means for expression of
inter-process communication and non-determinism, and not a full programming language.

Processes synchronize and communicate using synchronous, non-buffered message pass-

ing (termed input/output). The language has been extended a number of times [BRV84,
May83]. These extensions vary in the way communication targets are named, whether
processes may be dynamically created, and how communication is typed (if at all).

The Programming Language in the Sky (PLITS) project at the University of Rochester
[Fel79] is not a single programming language; it is a methodology through which any body
language can be transformed into a distributed programming language. PLITS processes
(also called modules) communicate by sending messages to other processes. In contrast to
other distributed programming languages, messages in PLITS are not typed. A message
consists of an arbitrary number of name/value pairs.

The languages NIL [SY83] and LYNX [Sco86] extend the previous languages that
supported processes and message passing by making the links over which messages are sent
first class values in the language. NIL processes communicate by sending and receiving
messages through strongly typed ports rather than by directing them at named processes.
LYNX incorporates the link idea of the DEMOS operating system into a programming
language without losing the flexibility to dynamically create and bind the ends of links
to processes. It adds to DEMOS both secure type checking and the ability to create
concurrent threads of control within a process to conveniently manage multiple concurrent
conversations.

The languages Distributed Processes (DP), Brinch Hansen’s language for the con-
struction of distributed real-time applications [BH78], and Ada, The Department of De-
fense’s standard language for embedded systems [Ada83] also support processes (or tasks).
Rather than communicating through message passing, communication in these languages
is accomplished by the invocation by one process of operations defined in another. Thus
processes in these languages serve a dual purpose. Since a process is an independent
thread of control, processes serve as the mechanism for defining concurrent execution.
Secondly, because they export operations which may be invoked by other processes, they

may be viewed as objects. In fact, Brinch Hansen claims that processes in DP unify the

Concurrent Pascal concepts of process, module, and class [BH78, pp. 940].

Other distributed programming languages provide direct support for only objects.
Cook’s original StarMod [Coo79] is a derivative of Brinch-Hansen’s DP that supports
“processor modules”, in which a number of server processes can execute concurrently.
Operations are exported by these processor modules, and may be serviced by any process
within the module, or by a process created specifically to service a request.

The Mesa language [MMS79] was augmented with remote procedure call by Bruce
Nelson [Nel81]. RPC provides almost transparent remote procedures to a procedure based
language.

The Synchronizing Resources (SR) language implemented at the University of Arizona
[And82] generalizes and unifies an number of earlier proposals. Distributed applications
are constructed out of resources, which may contain multiple processes and may export
operations which these processes implement. SR provides two mechanisms for invoking
operations (call and send), and two for implementing operations (proc’s and in state-
ments). The various combinations of these mechanisms provide support for procedure
call, rendezvous, process creation, and message passing.

The Argus programming language and system [Lis84] is a very ambitious attempt
to define a language in which applications with extreme reliability requirements may be
constructed. Argus applications consist of guardians which are abstractions of physical
machines. Intra-guardian communication is through shared data while inter-guardian
communication is by value. Argus achieves its high reliability through a transaction scheme
which is automatically administered by the system on remote operations.

The Eden distributed operating system is programmed by means of the Eden Pro-
gramming Language (EPL) [ABLNS85, Bla85]. EPL provides support for synchronous,
strongly-typed invocation of Eden objects named by capabilities. The EPL run-time sys-
tem supports multiple concurrent processes inside each object as well as providing support

for the packaging and unpackaging of invocation parameters in messages.

10

1.3 Motivation for Emerald

Existing distributed programming languages and systems have each supported two differ-
ent computational models. One model is appropriate for constructing distributed entities
that may wish to migrate from machine to machine in the network, communicate with en-
tities on other machines, or be remotely referenced. Such entities are passed by reference
when passed as arguments, thus facilitating sharing. The other computational model may
be used only to construct entities which are private to a single distributed entity.

The existence of these two models is not an accident. Two very different implemen-
tation styles are available in a distributed system. For private entities, constrained to be
accessed by only one distributed entity, traditional shared memory approaches provide
for an efficient implementation. For distributed entities that are accessible from remote
machines, a more general (and therefore, more expensive) implementation style is appro-
priate.

The languages CSP, PLITS, DP, Ada, NIL and LYNX and the operating systems Ac-
cent/Mach, Amoeba, RIG, DEMOS/MP, and V all support processes as their distributed
entities. Within a process, traditional programming language data types such as arrays
and records are supported. StarMod and RPC support distributed modules whose opera-
tions may be invoked remotely, as well as ordinary data which is private to a module. SR’s
resources form the distributed entities for that language; within a resource data is accessed
by shared memory. In Argus the distributed entities are guardians, while CLU objects
as defined by clusters form the private entities. Eden objects are Eden’s distributed en-
tities, which consist of Concurrent Euclid modules, monitors, records, and arrays. This
information is summarized in Table 1.1.

When two different models of computation exist, the programmer of a distributed
application must decide which to use for each entity in his application. Since the semantics
of the two models are different, once an object is implemented in one style it must be

rewritten for use as the other. For example, if we build a tree out of nodes that are Eden

11

objects, and later need a tree for strictly internal use within some other object we must
either design and code a different tree or suffer the inefficiencies of the much more general
implementation. In constructing a distributed document editor in Argus the difference
in semantics between guardians and CLU objects caused a guardian to be used where a
cluster may have been more appropriate [GSW86].

Since these two computational models so closely parallel the physical structure of the
systems on which they are implemented, one is tempted to believe that the existence of
the two models is natural, and therefore desirable. The same could be said of primary
memory and secondary storage in the pre-virtual-memory days. The relative access times
were so different that it seemed natural to keep the two concepts separate, and force the
programmer to explicitly transfer data between the two. In spite of this, virtual memory
has proven very successful.

In contrast to these distributed languages, centralized languages such as Smalltalk
[GR83], Alphard [WLS76], and CLU [LAB*79], as well as the multi-processor operating
systems Hydra and STAROS, have each supported only a single abstraction mechanism.
These languages have demonstrated the utility of a single object model, at least in a
centralized environment.

The thesis of this dissertation is that (1) a single object model can be defined that
is appropriate for both distributed entities and private ones, and (2) it is possible to

implement it so as to take advantage of the physical structure of the distributed system.

1.4 Plan of action

We defend this thesis by presenting a new programming language called Emerald that
is based on a single object model and has been implemented with efficiency comparable
to existing languages. The basis of the Emerald design is the belief that a single object
model is appropriate for constructing distributed applications, and in addition can be

made performant [BHJL86, BHJ87].

12

Chapter 2 provides an overview of the Emerald programming language. This overview
is meant to provide the background for the more detailed discussion in the remainder of
the dissertation. Motivation and justification for the design decisions is deferred until
later chapters, which discuss the impact of the single object model on other features of
the language. Chapter 3 discusses the type system of Emerald, which is rather unique,
primarily due to the object model and its support for late binding. Chapter 4 discusses
the definition and creation of objects in Emerald. Chapter 5 discusses other features of
the language including location dependent operations, support for reliability, and support
for concurrency.

An important criticism of a single object model is that it is less efficient than supporting
multiple models, each tuned to a particular style of implementation. Chapters 6 and 7
address this issue by discussing our first implementation of Emerald. Chapter 6 discusses
how the compiler is able to generate multiple implementations for objects from the same
source code. These implementations are tuned to particular usage patterns, and allow the
cost of an object to be appropriate to the generality required by it. Chapter 7 presents
performance data showing that an efficient implementation of Emerald is in fact possible.
The thesis concludes with a summary of its contributions and some ideas for further

research.

13

System
Name

Distributed
Entity

Private
Entity

Accent/Mach
Ada
Amoeba
CSp
DEMOS/MP
DP
LYNX
NIL
PLITS
RIG
\Y

Process

data

Mesa RPC
StarMod

Module

data

SR

Resource

data

Argus

Guardian

CLU Cluster

Eden/EPL

Eden Object

CE data

Emerald

object

object

Table 1.1: Models of computation

Chapter 2

Overview of Emerald

Emerald attempts to extend the utility of a single object model to distributed systems.
The Emerald object is the only abstraction mechanism in the language, and incorporates
the notions of data, procedure, and process. All entities in Emerald are objects. This
includes small entities, such as Booleans and integers, as well as large entities, such as
directories, compilers, and entire file systems. All objects exists so long as a means is

available to refer to them. Each Emerald object consists of:
e A name, which uniquely identifies the object within the network.

e A representation, which, except in the case of a primitive object, consists of refer-

ences to other objects.

e A set of operations, which define the functions and procedures that the object can
execute. Some operations are exported and may be invoked by other objects, while

others may be private to the object.

e An optional process, which is started after the object is initialized, and executes in
parallel with invocations of the object’s operations. An object without a process is
passive and executes only as a result of invocations, while an object with a process

has an active existence and executes independently of other objects.

15

Each object also has several attributes. An object has a location that specifies the node on
which that object is currently located. Emerald objects may be defined to be immutable.
This simplifies sharing in a distributed system, since immutable objects can be freely
copied. Immutability is a logical assertion on the part of the programmer rather than a
physical property; the system does not attempt to check it.

Emerald supports concurrency both between objects and within an object. Within the
network many objects can execute concurrently. Within a single object, several operation
invocations can be in progress simultaneously, and these can execute in parallel with the
object’s internal process. To control access to variables shared by different operations, the
shared variables and the operations manipulating them can be defined within a monitor
[Hoa74, BH79]. Processes synchronize through built-in condition objects. An object’s
process executes outside of the monitor, but can invoke monitored operations should it
need access to shared state.

Each object has an optional initially section — a parameterless operation that executes
exactly once when the object is created and is used to initialize the object state. When
the initially operation is complete, the object’s process is started and invocations can be

accepted.

2.1 Invocation

The only mechanism for communication in Emerald is through invocation. An Emerald
object may invoke some operation defined in another object, passing arguments to the

invocation and receiving results. Assuming that target is an object reference, the phrase:

target.operationName[argumentl, argument2]

means execute the operation named operationName on the object currently referenced by
target, passing argumentl and argument? as arguments. Invocations are synchronous; the
process performing the invocation is suspended until the operation is completed (or until

the run-time system determines that the operation cannot be completed, see Section 5.3).

16

An alternative explanation is that the process performing the invocation continues into
the invoked object and provides the thread of control that executes the code implementing
the operation. All arguments and results of invocations are passed by object reference.
That is, references are passed enabling the caller and callee to share the argument and

result objects. This same parameter passing semantics is called call by sharing in CLU.

2.2 Abstract types

Central to Emerald is the concept of abstract type. An abstract type defines a collection of
operation signatures, that is, operation names and the types of their arguments and results.
All identifiers in Emerald are typed: the programmer must declare the abstract type of
the objects that an identifier may name. An abstract type is represented by an Emerald
object that specifies such a list of signatures. For example, if the variable MyMailboz is

declared as:

var MyMailboz : AbstractMailbox
then any object that is assigned to MyMailbox must implement (at least) the operations
defined by AbstractMailbox.

We say that the abstract type of the object being assigned must conform to the abstract

type of the identifier. Conformity is the basis of type checking in Emerald. Informally, a

type S conforms to a type T (written S o> T) if:
1. S provides at least the operations of T (S may have more operations).

2. For each operation in T, the corresponding operation in S has the same number of

arguments and results.

3. The abstract types of the results of S’s operations conform to the abstract types of

the results of T’s operations.

4. The abstract types of the arguments of T’s operations conform to the abstract types

17

InCoreFile DiskFile

Read Read
Seek Seek
Write Write
InputOutputFile
Read
Write
Seek
InputFile OutputFile
Read Write
Seek Seek

\ /

Abstract Type

Any

Implementation

Figure 2.1: Example abstract types and object implementations

of the arguments of S’s operations (i.e., arguments must conform in the opposite

direction).

Note that conformity is a one-way relationship between abstract types: A o> B does
not imply that B o> A. In fact, if A o> B and B o> A, then A and B are identical
types. Abstract types therefore form a partial order, with conformity as the ordering
function. This partial order is more fully discussed in Section 3.5.3. Emerald’s notion of
type conformity is discussed in detail in Chapter 3.

The relationship between abstract types and object implementations is many-to-one in
both directions. A single object may conform to many abstract types, and an abstract type
may be implemented by many different objects. Figure 2.1 illustrates these relationships.

In the figure, A above B means A o> B.

18

The object DiskFile implements the abstract type InputOutputFile, the abstract types
InputFile and QutputFile (which require only a subset of the InputOutputFile operations),
and also the abstract type Any (which requires no operations at all). The abstract
type InputOutputFile illustrates that an abstract type may have several implementations,
perhaps tuned to different usage patterns. Temporary files may be implemented in primary
memory (using InCoreFile objects) to provide fast access while giving up permanence in
the face of crashes. On the other hand, permanent files implemented using DiskFile would
continue to exist across crashes.

Since Emerald objects may conform to more than one abstract type, it may be appro-
priate to change one’s view of a particular object at run-time. This change may either
be a widening, which corresponds to a move up in the abstract type partial order, or a
narrowing which corresponds to a move down. Narrowing requires no run-time check of
its validity, since any object conforming to some type in the partial order also conforms
to all types that it is greater than (with respect to o>) . Widening on the other hand
requires that the system check that the given object in fact does support the operations
required by the new type.

An example of where such view changes are required is in the implementation of a

directory system. Suppose we define the abstract type Directory as follows:
const Directory == type Directory
operation Add[name : String, thing : Any]
operation Lookup[name : String] — [thing : Any]

operation Delete[name : String]
end Directory

Suppose further that we have a variable declared as
var f : InputOutputFile

that currently names a file object. If we wish to insert this file into a directory d, we may

execute the invocation:

d. Add[“myfile”, f]

19

Since the second argument to Add on directories has type Any, we narrow the type of f:
InputOutputFile to Any. Now suppose we want to get the same object back out of the

directory d. We would like to execute the assignment:

f <+ d.Lookup[“myfile”

However, the type of the result of Lookup is Any, and Any does not conform to In-
putQutputFile, the type of f. Therefore, the preceding statement is not type-correct, and
is rejected by the compiler. On the other hand, we know that the object that will be re-
turned by executing Lookup on d with the argument “myfile” is in fact an InputOQutputFile,

and so we insert an explicit change of view.

[+ view d.Lookup[“myfile”] as InputOutputFile

The compiler cannot guarantee that this widening will be legal at run-time; a run-time

check is generated at this point.

2.3 Object creation

In most object-based systems, new objects are created by an operation on a class (in
Smalltalk or Simula terms) or type object (in Hydra or StarOS terms). This class object
defines the structure and behavior of all of its instances. In addition, the class object
responds to nmew invocations to make new instances.

In contrast, an Emerald object is created by executing an object constructor. An object
constructor is an Emerald expression (bracketed by object <name> and end <name>)
that defines the representation, the operations, and the process of an object. For example,
suppose the Emerald program in Figure 2.2 is executed; it results in the creation of
a single object. If we wished to create more oneFEntryDirectories we would embed the
object constructor of Figure 2.2 in a context in which it could be repeatedly executed,
such as the body of a loop or operation. This is illustrated in Figure 2.3. Execution of
this example creates the single object specified by the outermost object constructor. That

object exports an operation called Empty; invoking the Empty operation executes the inner

20

const myDirectory : Directory == object oneEntryDirectory
export Add, Lookup, Delete
monitor

var name : String < nil
var An : Any < nil
operation Add[n : String, o : Any]
name < n
An < o
end Add
function Lookup[n : String] — [0 : Any]
if n = name then
0+ An
else
0 < nil
end if
end Lookup
operation Delete[n : String]
if n = name then
name < nil
An < nil
end if
end Delete
end monitor
end oneEntryDirectory

Figure 2.2: A oneEntryDirectory object

object constructor, creating a new object that conforms to the abstract type Directory.
The code generated when compiling an object constructor is called the concrete type of
the objects created by execution of the constructor and serves to define the structure of
these objects as well as provide the implementation for the operations defined on them.
Conceptually, each object so created possesses its own copy of the code for Add, Lookup,
and Delete. In practice, there will be at most a single shared copy of the concrete type on

each machine.

2.4 Supporting multiple implementations

The most important goal of the Emerald design is the support of a uniform object model.

The semantics of all objects, whether large or small, local or distributed, must be consis-

21

const myDirectoryCreator == immutable object oneEntryDirectoryCreator
export Empty
operation Empty — [result : Directory]
result < object oneEntryDirectory
export Add, Lookup, Delete
monitor
var name : String < nil
var An : Any < nil
operation Store[n : String, o : Any]
name < n
An+ o
end Store
function Lookup[n : String] — [0 : Any]
if n = name then
0+ An
else
0 + nil
end if
end Lookup
operation Delete[n : String)]
if n = name then
name < nil
An < nil
end if
end Delete
end monitor
end oneEntryDirectory
end Empty
end oneEntryDirectoryCreator

Figure 2.3: A oneEntryDirectory creator

22

tent. This uniformity should hold both for the programmer who builds objects and types,
and for the application that invokes them. On the other hand, for objects to be useful,
they must be efficiently implemented.

In Emerald, all objects are coded using the single object definition mechanism we
have just illustrated. At compile time, the Emerald compiler chooses among several im-
plementation styles for the object, picking one that is appropriate to the object’s use.
Three different implementation styles are used; each makes a different tradeoff between

representation efficiency, invocation overhead, and generality.

e Global objects are those that can be moved within the network and can be invoked
by other objects not known at compile time (in other words, references to them
can be exported). These objects are heap allocated by the Emerald kernel and are
referenced indirectly through a descriptor. An invocation may require a remote

procedure call.

e Local objects are local to another object (i.e., a reference to them is never exported
from that object). They are heap allocated by compiled code. These objects never
move independently of their enclosing object, and are referenced with a pointer to
their data area. An invocation may be implemented by a local procedure call or by

inline code.

e Direct objects are local objects except that their data area is allocated directly in
the representation of the enclosing object. They are used mainly for built-in types,
structures of built-in types, records, and other simple objects whose organization

can be deduced at compile time.

Thus, Emerald is similar to the programming languages and operating systems sur-
veyed in Section 1.2 in that there are several different implementation styles with varying
performance characteristics. However, unlike these languages, the implementation differ-

ences are hidden from the programmer. The compiler chooses the best implementation

23

based on compile time information. In many cases, the compiler can also determine the
concrete type of objects and can use this information for further optimizations. If the com-
piler knows only the abstract type then it must assume the most general object invocation

mechanism.

2.5 Distribution

Emerald is designed for the construction of distributed applications. As previously stated,
we believe that objects are an excellent way of structuring such programs because they
provide the units of processing and distribution. This belief has been confirmed by our
experience with distributed applications in Eden [AH84, AH85, ABBW84, Blag85].

When constructing distributed applications for Eden, we noticed that distributed ap-
plications fall into two distinct classes. Some applications, such as replicated nameservers
and distributed databases, have only come into existence because of distributed envi-
ronments. The distributed nature of the system is important to the specification of the
function that these applications are to perform. To construct such applications, it must
be possible to control the locations of the objects that make up the application. For ex-
ample, it must be possible to ensure that two replicas of an important resource are placed
so that a single failure cannot make them both inaccessible. To facilitate the construction
of these applications Emerald provides primitives to control the placement and movement
of objects.

Other distributed applications are really displaced centralized applications such as mail
systems and compilers. Their construction in a distributed environment is merely compli-
cated by distribution. To assist in the construction of these applications, the manipulation
and invocation of operations on objects in Emerald, as it was in Eden, is location inde-
pendent. An object need not concern itself with the location of any other object that it
uses.

As a distributed programming language, Emerald is useful for the construction of both

24

classes of distributed application: those that are born to distribution, as well as those that

have had distribution thrust upon them.

2.6 Summary

We have briefly described and illustrated the programming language Emerald. Its most
notable feature is the single object model which may be used to construct all objects,
ranging from local data abstractions including records and arrays to entire distributed
applications including multiple concurrent processes such as file systems or compilers.
Emerald can perhaps be most easily understood by enumerating the features that it
shares with existing languages, and those that are unique to it. It incorporates the single
object model of Smalltalk, the syntax of an Algol-like language and the distribution related
features of Eden (including mobile objects) in an efficient, compiled language. Its novel
features include support for abstract types, multiple compiler-generated implementations
from the same source code for different situations, and object constructors for object
definition and creation. With this background, the following three chapters discuss in

detail the important Emerald design decisions; the next chapter discusses types.

Chapter 3

Types

This chapter describes the type system of Emerald and, more importantly, discusses the

factors that affected its design.

3.1 What are types?

The role of types in programming languages has received a great deal of attention in
the literature. The discussion has lately focused on polymorphism, type inference, and
whether Type (the type of all types) is itself a type. We will discuss these issues later. We
wish to first answer a much more fundamental question: what are programming language
types?

The development of typed systems can be best understood by examining some untyped

ones. There are a number of examples of untyped universes:
e Sets in mathematics
e Bit strings in computer memory
e S-expressions in lisp

Each of these universes is untyped, or, more correctly, each of these universes has only
one type, therefore all values in the universe have the same type. Consider, for example,

the universe of bit-strings in computer memory. In most computer architectures, memory

26

is not typed. That is, integer values, machine instructions, multi-linked data structures
and matrices of real numbers are all represented as bit strings. The interpretation of one
bit string as a sequence of instructions for the processor to execute and another bit string
as a matrix of real numbers is a matter of convention. It helps us to understand what
is going on to classify these bit strings by their intended use; we call some bit strings
programs and others data. We make these distinctions to organize our own universes,
and because performing arbitrary operations on bit strings without regard for their types
may be meaningless. For example, it is usually meaningless to add floating point data to
machine instructions. On the other hand, there is nothing fundamental in the machine
that prevents us from using data improperly, for example, executing real matrices as
programs or manipulating programs as integers.

Type systems are a natural outgrowth of our informal classification of things. Infor-
mally, a type in a programming language encapsulates the notion of a collection of entities
with similar attributes and operations. For example, we think of the integers as a type

with operations like multiplication, addition, and division.

3.2 The purpose of programming language types

The previous section leads us to the conclusion that types are an outgrowth of our efforts
to classify the things that we deal with. That is, types help us to group similar objects
together and concentrate on the features that they have in common.

Let us look at the stated purposes of types in programming languages. According to
Mark Manasse [Car86], the fundamental problem addressed by a type theory is to ensure
that programs have meaning. Donahue and Demers [DD85] claim that the purpose of a
programming language type system is to prevent the misinterpretation of values — not
to ensure that a meaning exists, but to make that meaning independent of representation

discussions. According to Cardelli and Wegner [CW85]:

A major purpose of type systems is to avoid embarrassing questions about

27

representations, and to forbid situations in which these questions might come
up. A type may be viewed as a set of clothes (or a suit of armor) that protects

an underlying untyped representation from arbitrary or unintended use.

In fact, Donahue and Demers state that a programming language is strongly-typed exactly
when it prevents this misinterpretation of values [DD85].

In addition to protection from misinterpretation, type systems serve other roles in
programming languages. One thing that we expect from a typed programming language
is notification from the system when we have committed a type error in programming.
Such type checking provides early feedback to the programmer that he has committed a
programming error.

Let us compare a brief program fragment written in CLU (a typed language) to one

written in Smalltalk (an untyped one). We expect a CLU implementation to report that

¢ : char
c:="a’
c:=c + 372

is not correct when we attempt to compile the program. On the other hand, a Smalltalk

implementation presented with

¢

c<+’a

c<+ c—+ 372

is unable to report at compile time that the + operator will fail. Such errors in Smalltalk
can be detected only at run-time.
Even in those cases where type checking is not completely done at compile time, a

type system allows run-time messages to more closely pinpoint the cause of the trouble.

28

In Smalltalk, a language without declared types, type errors committed by the programmer
eventually get caught as “Message not understood” errors when an attempt is made to
invoke an unimplemented operation on an object. Usually, the root of the problem is not
that the object should have the operation defined for it, but rather the object is not of
the expected type at all.

Another benefit claimed for programming language type systems is increased perfor-
mance. In most cases, compile time type checks permit more efficient storage allocation
and the complete elimination of run-time type checking. In addition, in many cases compile
time type information allows us to generate more efficient code. Consider the implementa-
tion of the + operator in Smalltalk and CLU. In both of these languages, + is overloaded.
That is, it can be applied to operands of a number of different types. In Smalltalk, due to
the lack of type information in the program text, the implementation of the + operator
must determine the types of its arguments at run-time and act accordingly. In CLU,
the types of the arguments can be determined statically by the translator, enabling the
translator to select the appropriate operator and compile in-line code for the + operation.

In a large number of programming languages, the type system is used to convey in-
formation about the implementation of the thing described. Thus the definition of a

tree-node type

type Node = record
var data : Integer
var left, right : tNode

end record

typically defines an implementation as much as it provides a description of the properties
possessed by values of the type.

This close coupling of implementation with description is also apparent in the definition
of the compatibility rules between types in these languages. Consider the packed and non-

packed variants of records in Pascal.

29

type t1 = packed record
var a : char
var b : integer
var c : char

end record

type t2 = record
var a : char
var b : integer
var c : char

end record

These two types are not compatible, even though there is no difference in the operations
that can be performed on them. The non-compatibility stems from the fact that the two
types are expected to be implemented differently. Even in a language such as CLU in
which the user can define his own data types, two clusters that define data types with the
same operations but different implementations are not compatible.

A final purpose that types typically serve in programming languages is the creation of
new entities. In fact, in most programming languages there is no way to cause the creation
of an object without first creating its type. Examples of this are creators in CLU clusters

and set creators in Concurrent Euclid.

3.3 What should types do?

We have seen that programming language types serve (at least) six purposes:
1. representation independence
2. early error detection

3. more meaningful error reporting

30

4. improved performance
5. definition of the implementation of values
6. instance creation

Interestingly, only those purposes having to do with error checking and reporting are
at all related to the reason that type systems were invented in the first place: to assist us
in classifying the objects that we manipulate. To provide such assistance, types should
concern themselves with the attributes of the objects that they represent. Defining the
interface to objects is clearly the role of types. For example, when you know that some
entity has type Directory, you know that it implements operations Add, Lookup, and
Delete with particular arguments and results.

Emerald separates the other purposes that types serve in programming languages from
their role in classifying objects. The major purpose traditionally served by types, ensuring
representation independence, is served in Emerald by objects themselves. In object-based
languages, only an object may have access to its own representation. An attempt to
manipulate an object in an unintended manner results in an illegal invocation of some
unimplemented operation. In Smalltalk, for example, it is impossible to apply a floating-
point addition operation to integer values because those integer objects only implement
the integer addition operation. The object model ensures representation independence,
thereby freeing the type system from this responsibility. The remainder of this chap-
ter discusses the development of the Emerald type system, which addresses the issue of
defining object interfaces and explains how Emerald provides more support for classifying
objects than traditional type systems. Chapter 4 discusses the other roles typically played
by types: defining object implementations and object creation. Chapter 6 discusses the

implementation issue of improved performance.

3.4

31

Requirements for Emerald’s type system

To be useful for the construction of distributed, system-level applications, Emerald must

provide:

a single model of objects appropriate for objects at all levels of the system
distribution

system-level application support, which involves the addition of newly defined and

created entities to existing systems

an efficient implementation

Several of these requirements placed constraints on the type system of Emerald.

First, the type system can only be concerned with the abstract nature of the entities

being described. This is true for two reasons.

1.

To support the addition of newly defined objects to an executing system, the type
system must not distinguish between two objects based on their implementations.
To see this more clearly, consider the problem of adding a new kind of file to an
existing file system. All the existing programs that manipulated files must be able
to manipulate these new files, assuming only that this new implementation of the file
type meets the specification of that type. It is clear from our Eden experience that
this kind of flexibility in the type system is important for the kind of applications
that we want to support. For old code to invoke newly created objects it must be
possible to have these new objects implement existing types, i.e., the new object

must be able to conform to the old type.

We mentioned previously that the Emerald compiler chooses an implementation for
each object based on the attributes of the object and the way that it is used. These

multiple compiler-generated implementations from the same source code clearly must

32

all have the same type. Therefore, that type must be concerned only with the

interface to the object, not its implementation.

Second, our desire for efficiency requires us to do as much type checking as possible at
compile type.

Third, we require the ability to delay type checking until run-time. It must be possible
for a reference to an object to be both widened and narrowed in type at run-time. Again,
this requirement is a result of our application domain. System-level applications often
wish to delay type checking until run-time. An example is the implementation and use of
a hierarchic directory system. We wish to be able to put objects into the directory system
without regard to their types, and then later retrieve them and ensure that they are of the
proper type for later processing. This implies that type information about objects must
be available for run-time inspection.

Fourth, the type system must support polymorphism. Typically, programming lan-
guages allow operations to be parameterized by data values, but not by types. That is, a
procedure that creates a stack in Pascal may be parameterized by an integer representing
the maximum size that the stack may grow, but not by the type of the elements that
will be pushed onto the stack. Polymorphic languages allow constructs to be parameter-
ized with types. We wish to retain the flexibility of dynamically typed languages such as
Smalltalk and EPL (in which capabilities are dynamically typed) within the framework
of a statically typed language. These languages have the ability to abstract the qualities
of a stack object away from the qualities of the objects that are to be pushed onto it. We
need to provide similar expressive power.

To meet this set of requirements, the Emerald type system has the following major

features:
e Types define the interface to objects, but provide no implementation information.

e Types are themselves objects. Therefore, types exist at run-time allowing run-time

33

type checking to be performed. In addition, passing types as parameters to support

polymorphism is simplified.

e All identifiers are typed statically, and all assignments and operation invocations are

type checked at compile time.

e To implement polymorphism, the type system concerns itself not only with the types

of types that are passed as parameters, but also with their values.

We will discuss each of these attributes of the type system in the following sections.

3.5 Abstract types

The Emerald type system must allow two objects with differing implementations to have
the same type. These two implementations may either be user-defined (a new kind of file
added to the file system) or compiler-produced (two representations generated from the
same source code).

A number of existing languages including Alphard [WLS76], Modula [Wir77], Euclid
[LHL*77], CLU [LSAS77, LAB*79], Gypsy [GCKWT79], and Ada [Ada83] claim to support
abstract data types. In these languages, however, each object has exactly one type. This
tight binding of types to objects is too restrictive for our applications. Our type system
must allow the construction of types, instances of which can be used without knowledge
of their internal representation.

We define an abstract type to be a collection of operation signatures, where an operation
signature includes the name of the operation, and the names and types of its arguments

and results.
3.5.1 Informal definition of Emerald’s type system

In Emerald, all identifiers are typed abstractly, i.e., the programmer declares the abstract

type of the objects that an identifier may name. Such a declaration captures his knowledge

34

of the set of invocations to which those objects should respond. The only exception to
this rule is that the type of constants may be omitted. If omitted, the type is inferred by
the compiler.

The notion of type conformity is central to Emerald. The legality of an assignment
is based on the conformity of the type of the assigned expression and the abstract type
declared by the programmer for the identifier. This conformity will always be checked at
compile time. Conformity was introduced in Section 2.2. Roughly, a type P conforms to
another type @ if P provides at least the operations of @. (P may also provide additional
operations.) Moreover, the types of the results of P’s operations must conform to the types
of the results of the corresponding operations of (). Finally, the types of the arguments of
the corresponding operations must conform in the opposite direction, i.e., the arguments
of ()’s operations must conform to those of P’s operations.

To illustrate the need for the parameter matching rules, consider the following exam-
ples. Any is the abstract type containing no operations, thus every type conforms to
it.

type AnyPusher
operation Push[Any]
end AnyPusher

type IntegerPusher
operation Push[Integer]
end IntegerPusher

These rather useless types define “bottomless pits” into which integers and arbitrary ob-
jects can be pushed. Intuitively, one would expect AnyPusher to conform to IntegerPusher,
because an implementation of AnyPusher can be used wherever an IntegerPusher is re-
quired. The rules bear this out; the two types are identical except for the argument types
of Push, and these conform in the opposite direction, i.e., Integer conforms to Any. Now
consider:

type AnyPopper
operation Pop — [Any]
end AnyPopper

35

type IntegerPopper
operation Pop — [Integer]
end IntegerPopper

Here IntegerPopper conforms to AnyPopper, because the results of Pop conform in the

same direction. Finally, observe that:

type AnyStack
operation Pop — [Any]
operation Push[Any]
end AnyStack

type IntegerStack
operation Pop — [Integer]
operation Push[Integer]
end IntegerStack

are incomparable; they do not conform in either direction. The reason for this should be
obvious; users of an IntegerStack object expect its Pop operation to return an Integer, so
an AnyStack clearly won’t do. Users of an AnyStack expect to apply its Push operation
to arbitrary objects; the Push of IntegerStack can be applied only to an Integer.

Note that Emerald’s notion of type conformity differs from inheritance in Smalltalk.
In Smalltalk, a subclass does not necessarily conform to its superclass; for example, it may
override some of the operations of the superclass so that they expect different classes of
argument. Moreover, one class may conform to another without a subclass relationship
existing between them. What a subclass and its superclass do have in common is part
of their representation and some of their methods. In short, inheritance is a relationship

between implementations, while conformity is a relationship between interfaces.
3.5.2 Formal definition of Emerald’s type system

The above explanation of conformity in Emerald was not well-founded; the conformity of
two types depended on the conformity of the types of the arguments and results of the
operations defined by the types. This section will present a formal definition of Emerald’s

type system including conformity, as well as an algorithm for checking conformity.

36

Let F, I, T be disjoint sets, F' being the set of operation names, I being the set of
identifier names, and T being the set of type names. Further, let AbstractType € T', an;

and rny € I, and let a; and r, € T U I. A signature, s, is either:

e the distinguished null signature A, of undefined arity, or
e a pair <functional, parameters> where:

— functional(s) is a Boolean value

— parameters(s) is an expression of the form
<ani, a1> X -+ X <ang, ap> —> <rng, 11> X oo X <ryy, ">

with the following two restrictions which ensure that identifiers used as types
are bound by some previous argument in the same signature:
1. if some a; € I then
dl s.t. [< j and an; = a; and a; = AbstractType
2. if some r; € I then

3l s.t. an; = r, and a; = AbstractType

S then has arity <n, m>.

For the moment we will not be considering the argument and result names an; and rny.
They are included in preparation for the discussion on polymorphism in Section 3.8.3.
Let S be the set of all signatures. A type declaration of t € T is a pair

<immutable, operations> where:
e immutable(t) is a Boolean value, and
e operations(t) is a total function from F' to S.

Obviously, in actually declaring the operations of a type, one need only specify the opera-
tions which have non-null signatures. For example, the type IntegerStack of the previous

section can defined as:

37

immutable(IntegerStack) = false

<false, Integer —> if z = push

<false, — Integer> if x = pop
A otherwise

operations(IntegerStack)(z)

Suppose T is a binary relation on T, i.e., T C T x T. Intuitively, 7 is a set of
pairs which we hope are true assertions about conformity, i.e., <t, u> € T = t conforms
to u. We haven’t defined conformity yet, however, so the intuition can’t be formalized.
Now suppose that s, s’ are elements of S. Then 7 induces a relation S on S as follows.

<s, s> € S if either s’ = A or all three of the following hold:
1. functional(s’) = functional(s)
2. arity(s) = arity(s’)

3. writing

parameters(s) = <anqi, a1> X -+ X <any, ap> — <rng, 11> X o0 X <y, Fp>

parameters(s’) = <anl, a|> x -+ x <anl,, al, > — <rnl, r{>x - x <rnl, rl >
we have
<aj, a;> €T, forj=1,2,...,n,and

<rg, m>€T, fork=12,...,m.

Informally, corresponding pairs of results must be in 7 and corresponding pairs of argu-
ments must be in 7!, To illustrate this, consider the Pop operations on the IntegerPopper

and AnyPopper types from the previous section. We have:

s = <false, — Integer>

s = <false, - Any>

For <s, s'> to be in S:

38

1. false = false
2. <0, 1> = <0, 1>
3. <Integer, Any> € 7.

All three of these conditions are true (we will see later how to show that <Integer, Any>
€ T), and therefore <s, s> is in S.

Now, what is to distinguish an arbitrary 7 from our desired conformity relation?
Exactly the requirements that the immutabilities match and that the corresponding pairs
of signatures are in S. Formally, we say that T is valid if, for all type names ¢ and u, and

all operation names f € F, <t, u> € T implies both the following conditions:
1. immutable(u) = immutable(t)
2. <operations(t)(f), operations(u)(f)> € S

We may now define conformity. A type ¢ conforms to a type u if there exists some
valid relation containing <t, u>. We write ¢ conforms to u as t o> w.
Lemma:
The union of two valid relations is valid.
Proof:
Follows immediately from the definitions.

Since valid relations are closed under union, we may safely combine separate systems
of declarations. If two systems of declarations are separately valid, then their union is also
valid.

Now we can define a decision procedure which will check whether
to>u

is true. Starting with 7 = { <t, u> }, we will build two relations 7" and S recursively. T

will be a valid relation on T', and S will be the relation on S induced by 7. Whenever we

39

insert <a, b> into 7', we must also insert <operations(a)(f), operations(b)(f)> into S for
all f such that operations(a)(f) # A. This ensures that 7 remains valid. Additionally,
whenever we insert <s, s'> into S, we insert all the appropriate <a’, a;>’s and <ry, r},>’s
into 7 so that S is indeed the derived relation for 7. We fail in attempting to insert a pair
<t, u> into T if and only if immutable(u) % immutable(t). We fail in attempting to insert
a pair <si, so> into § if and only if the arities of s; and s mismatch, or functional(ss)
functional(sy), or s1 = A when sy # A. If we succeed, we will have constructed a valid
relation containing <t, u>, thereby proving that ¢ o> u. In fact, we will have constructed
the smallest relation containing <t, u>. On the other hand, we only inserted necessary
elements into the relations 7 and S, so if the procedure fails, then ¢ does not conform to
u.

Let us apply this decision procedure to check the conformity of IntegerStack and AnyS-
tack. To insert <IntegerStack, AnyStack> into T, immutable(AnyStack) must imply im-
mutable(IntegerStack) (which they do since both are false), and in addition we must insert

into S the following two pairs of signatures:

<operations(IntegerStack)(Pop), operations(AnyStack)(Pop)>

<operations(IntegerStack)(Push), operations(AnyStack)(Push)>
Looking at the definition of IntegerStack and AnyStack, these pairs of signatures are:

<<false, — Integer>, <false, > Any>>

<<false, Integer—>, <false, Any—>>

The arities and functional components of these two pairs of signatures correspond, there-
fore we must only insert the pairs <Integer, Any> (from Pop) and <Any, Integer>
(from Push) into 7. The insertion of <Integer, Any> causes no difficulties.
We attempt to insert into S all those pairs of operation signatures for which
operations(Any)(f) # A, but operations(Any)(f) = A for all f € F. Note that

this gives formal justification to our earlier statement that all types conform to

40

Any. In attempting to insert the pair <Any, Integer> into 7, we must insert
<operations(Any)(+), operations(Integer)(+)> (among others) into S. We fail in doing
this since operations(Any)(+) = A where operations(Integer)(+) # A. We therefore con-
clude that, because of the existence of the Push operation, IntegerStack does not conform
to AnyStack. This coincides with our intuitive result in Section 3.5.1.

Note that since the union of valid relations is valid, there is no need to start with
empty relations 7 and S; any valid relation 7 on types and its induced relation S on
signatures may be used as a starting point. In actually implementing this procedure, the
relations 7 and S may be retained after conformity checking, thus eliminating the need

to compute them again.
3.5.3 Types form a lattice

Our definition of conformity implies that T', the set of types is a partial order under o>.
This information was graphically depicted in Figure 2.1. The definition of o> makes it
simple to conclude that 7" has a least element: the non-immutable type with no operations.
This type is the bottom of the partial order, and is called Any since every type (and
therefore every object) conforms to it.

For T to be a lattice, the join (U or least upper bound) and meet (M or greatest
lower bound) between each pair of elements must exist. Since T is a partial order with
a least element (L or the type Any), all the meets exist. For the joins to exist, it must
be possible to define a type that conforms to any two arbitrary types. As Emerald’s type
system has been defined so far, it does not allow this construction for two arbitrary types.
In particular, if both types define the same operation, but the arity of the signatures is
different, it is not possible to define a type that conforms to both. As an example, a type

that conforms to both:

41

type T1
operation o[Any]
end T1
type 172
operation o[Any, Any]
end T2

must define an operation o that takes both one and two arguments, clearly an impossible
task. We may make T into a lattice by the addition of a single additional element T. In

contrast to L, which is definable in Emerald as the type Any:

type Any
% no operations
end Any

T is not definable in Emerald, since it must implement every operation with every possible
combination of argument and result types. It must therefore be explicitly added to the
set of types, and the definition of conformity given above must be modified to state that
<T,u> €T for all w in T. T is the predefined Emerald type None, so named because
no object (other than the object nil, to which all variables are initialized) can implement
it.

We may look at the type lattice in terms of information content. A type ¢ conforms
to a type u if ¢ provides more information (about the objects that conform to it) than
does u. L contains no information, thus every type conforms to it. T contains too much

information (in fact, contradictory information) thus no other type can conform to it.
3.5.4 Discussion

The reader may notice that our definition of type conformity relies heavily on the names

chosen for operations. There are two disadvantages to this:

1. Two types may not conform when they “really” should if the operation names are not
identical. Suppose that someone defines an object that is directory-like except that
instead of using the name Add for the operation that adds something to a directory
she chose the name Insert. Our emphasis on the operation names in conformity

checking causes this new type to not conform to Directory.

42

2. Two types may accidentally conform because they have operations with the same
names and parameter types, even though the semantics of the operations are very

different.

These two problems could be resolved by considering the semantics of the operations in
addition to their signatures. We have not yet pursued this idea, but discuss it as an avenue

for further research in Section 8.2.

3.6 Types are objects

In most languages, types are not first-class values. It is illegal to pass a type as a parameter
or to invoke operations on types. The programming language Russell [DD79, DD85] was
an experiment in making types first-class values. Types could be passed as parameters
to functions, computed and returned from functions and assigned to variables. Abstract
types in Emerald are likewise first-class citizens.

Abstract type objects obey a particular invocation protocol: they export a function
(without arguments) called getSignature that returns a Signature object. Signature is
a pre-defined abstract type. In other words, an abstract type is an object that conforms

to the following abstract type:

immutable type AbstractType
function getSignature — [Signature]
end AbstractType

Typically, abstract types are created using type constructors. An example of a type con-

structor is:

type Directory
operation Add[name : String, thing : Any]
operation Lookup[name : String] — [thing : Any]
operation Delete[name : String]

end Directory

This constructor is executable, and when executed causes the creation of an object

that conforms to AbstractType. The execution of the getSignature operation on the

43

resulting object returns another object: an abstract type with three operations: Add,
Lookup, and Delete. Type constructors are, however, not the only mechanism for creating

abstract types. This is discussed further in Section 4.2.

3.7 Static typing

To perform static type checking the compiler must be able to determine the type of every
identifier and the result type of every expression. On the other hand, arbitrary objects
can be abstract types as discussed above. Syntactically, therefore, types are arbitrary

expressions. For example, a variable declaration (without initialization) has the form:
‘var’ <identifier> ‘> <expression>

Since assigning a type to the identifier declared in this way requires knowledge of the
value of the expression, the compiler must evaluate all expressions appearing in type
positions. Expressions that may be evaluated by the compiler are called manifest. Type
constructors are manifest if all expressions appearing in type positions within them are
manifest. Invocations of operations on objects are manifest only if all four of the following

conditions are true:
1. the target is immutable
2. the operation is a function
3. all the arguments are manifest
4. the body of the operation is sufficiently simple

The first three conditions guarantee that the answer is independent of when the invocation
is performed. This allows us to execute it early — at compile time. The final condition frees
the compiler from performing arbitrary computations at compile time to evaluate manifest
expressions. Currently, because the compiler is not part of the Emerald environment, only

operation bodies that consist of the return of a manifest value are considered manifest.

44

While all assignments and invocations are type checked statically, Emerald incorpo-
rates a mechanism for performing run-time type checks. This mechanism is the view
expression, which changes the abstract type through which an object is viewed. It has the

form:
‘view’ <expression> ‘as’ <typeExpression>

The abstract type of the expression is the type given by typeExpression (which must be
manifest). A run-time check is generated by the compiler if it cannot determine statically
that the expression is guaranteed to conform to the type. The view expression is the only
method for widening the type of a reference, and only where view expressions are used are
run-time type checks performed. View expressions that narrow the type of a reference are
redundant because conformity implies implicit narrowing. A redundant view expression

generates no run-time check.

3.8 Polymorphism

In attempting to define an Emerald type system that incorporates polymorphism, we went

through two stages.
3.8.1 A first try

Our first attempt at incorporating polymorphism into Emerald naively assumed that con-
formity and the fact that types are objects would be enough. That is, we expected that we
could define a polymorphic stack as in Figure 3.1. The where clause provides a convenient
place to introduce new constants; stackType is declared as a constant with the indicated

value (an abstract type). We may then use Stack as:

const stackOfInteger == Stack.of [Integer]

For this example, everything is fine. Integer conforms to AbstractType, therefore

Stack.of [Integer]

45

const Stack == immutable object aStackCreator
export of
function of [eType : AbstractType] — [result : stackType]
where

stackType == type stackType
operation Push[eType]
operation Pop — [eType]
function Top — [eType]
function Empty — [Boolean]
end stackType
end where
result < object aStack
% representation declarations
operation Push[anElement : eType]

end Push

end aStack
end of
end aStackCreator

Figure 3.1: A polymorphic stack

46

is type correct. Confidently, we then proceed to define a more interesting polymorphic
object: a sorted collection. This object is supposed to maintain a list of objects so that

they may be traversed in increasing order. Figure 3.2 contains our first attempt. The

const Sortable == immutable type Sortable
function <[Sortable] — [Boolean]
end Sortable

const SortedCollection == immutable object aSortedCollectionCreator
export of
function of[eType : AbstractType] — [result : collection Type]
where

collection Type == type collection Type
operation Add[eType]
operation getElement[Integer] — [eType]
function Size — [Integer]
end collection Type
eType o> Sortable
end where
result < object aCollection
% representation declarations
operation Add[anElement : eType]

end Add

end aCollection

end of
end aStackCreator

Figure 3.2: A polymorphic sorted collection

expression:

eType o> Sortable

in the where clause indicates that we wish the actual argument to the of operation to be
an abstract type that conforms to Sortable. That is, it must be immutable and have a <
function that orders its values. We use this object as:

const IntegerCollection == SortedCollection.of [Integer]

In type checking this expression, we check whether the type of Integer conforms to

AbstractType, which it does since Integer is an abstract type (exports the required

47

getSignature function). Then, because of the where clause, we need to check the value
of Integer against the value of Sortable. Unfortunately, Integer does not conform to
Sortable. For Integer to conform to Sortable, the arguments of the < operation must
conform in the opposite direction; i.e., Sortable must conform to Integer. Since Integer
has (among others) the operation + which Sortable does not have, Sortable does not
conform to Integer, and therefore Integer does not conform to Sortable.

We therefore conclude that our definition of conforms must be incorrect, since integers
should be perfect candidates for insertion into sorted collections. After a number of
unsuccessful attempts at defining conformity so that Integer will conform to Sortable,
we next try to prove that it cannot be done. This turns out to be very simple. If
Integer conformed to Sortable, then Character should also conform to Sortable, since
the < operation on characters has the same signature as that on integers (except for the

changed type name). We may then write the following program fragment:

var s1, s2 : Sortable

s1 « 1000000

82« o’

assert s/ < s2
Assuming that both Integer and Character conform to Sortable, the type system has no
choice but to conclude that this program fragment is type correct. Integer conforms to
Sortable so the assignment to s! is type correct (through an implicit narrowing). A similar
argument implies that the assignment to s2 is type correct. The comparison in the assert
statement is of two Sortables, and so is type correct. Unfortunately, that comparison
makes no sense. There are two < operations that we could attempt to use: the one on
integers or the one on characters. Neither of these however is able to compare characters

to integers. We therefore need to make this program illegal, so we conclude that it is not

possible to allow Integer to conform to Sortable.

48

3.8.2 A second try

After our first attempt to support polymorphism with just conformity and types as objects,
we concluded that conformity by itself was not enough. What we needed was a way to
make Integer conform to Sortable, but only sometimes. Such a mechanism exists in the
form of type variables CW85, Car86]. A type variable is very much like a type, except that
the rules for conformity checking are modified slightly. In particular, when attempting to
conform a type ¢ to a type variable T one first identifies the local names for the types,
and then performs the normal conformity checking. With this definition of conformity
between types and type variables, and defining constrained formal parameters to be type
variables rather than type constants, we may implement polymorphism.

Looking again at the definition of SortedCollection in Figure 3.2, no syntactic changes

are required to make it correct. The constraint

eType o> Sortable

in the where clause causes eType to become a type variable. When we execute
SortableCollection.of [Integer]
we must check that the type constant Integer conforms to the type variable eType. First

we make their local names the same by substituting Integer for Sortable throughout the

definition of Sortable. We are then checking whether Integer:

const Integer == immutable type Integer
function +[Integer] — [Integer]

function <[Integer] — [Boolean)]
end Integer

conforms to the modified definition of eType:
const eType == immutable type Integer

function <[Integer] — [Boolean)]
end Integer

which it clearly does.

49

3.8.3 Formal definition of polymorphism

To include polymorphism in our formal definition of Emerald’s type system, we need to
make the following additions. The basic definitions and conformity checking algorithm
remain the same. Previously, all assignments were checked using the conformity algo-
rithm including the implicit assignments of arguments to formal parameters in operation
invocations. To handle polymorphism, we need a new rule for type checking operation
invocations.

First we need to introduce some syntax to handle the substitution of names necessary
to deal with type variables. Let ¢, u;, and v; be type names. We define t[u; /vy, ..., uy/vy]
to be the type formed by substituting in ¢ the name wu; for each free occurrence of the

name v;. For example, with the definitions of Integer and Sortable as previously given,
Sortable[Integer/Sortable]

is the type:

immutable type Integer
function <[Integer] — [Boolean)]
end Integer

We now present the type checking rule for operation invocation. An operation invocation
has the form:

e.oler, ..., el

Let the type of e be t, and the types of e; be t; for : =1,2,...,n. This invocation is type

correct if and only if:
1. operations(t)(o) # A, and
2. writing operations(t)(o) as:
<ani, a1> X -+ X <any, ap> — <rnyg, 11> X o0 X <ryy, Ty >

then for allt =1,...,n:

50

(a) t; > a;, and

(b) if a; = AbstractType then e; o> an;[e;/an;] .
3.9 Comparison

We can compare Emerald’s type system with that in a number of existing and proposed
languages. The languages Russell [DD79] and the typed A-calculus of Cardelli [Car86] both
treat types as first class citizens as we do. First-class types allow the simple expression of
polymorphism using the parameterization scheme already in the languages. In addition
to first-class types, Cardelli’s language defines Type (the type of all types) as a type itself,
just as our notion of AbstractType (the type of all types is also a type). However,
because these languages are value-based rather than object-based their type systems have
the additional burden of providing the representation independence that we discussed in
Section 3.2. Therefore the type of an identifier determines not only the abstraction, but
also the implementation, of the values that may be assigned to it.

Our type system is perhaps closest to that of Owl [SCW85]. The Owl type system
also concentrates on the specification of objects rather than their implementation, and
its definition of subclass compatibility is very similar to Emerald’s notion of conformity.
However, types in Owl are not objects, and Type is not a type. This forced the designers

to use a second parameterization mechanism for the creation of polymorphic types.

3.10 Summary

The purpose of Emerald’s type system is to assist the programmer in classifying the objects
used in an application. Other purposes traditionally served by a programming language
type system are addressed by other features of Emerald. In addition, Emerald’s type

system is constrained by the intended application domain of the language in three areas:

1. All type checking, except where explicitly requested by the user is to be done at

compile time.

o1

2. It must be possible to delay type checking until run-time by explicit programmer

request.

3. Polymorphism is supported. Types may be passed to operations, returned as the
results of operations, and manipulated in arbitrary ways at run-time subject only to

the constraint that all expressions in type positions must be manifest.

Since Emerald types are concerned only with the specification and not the implementation
of objects, Emerald’s type system better supports the programmer’s classification of his
objects; Objects that may serve the same purpose may have the same type independent of
their implementation. Emerald’s type system serves only to help the programmer classify
the objects used in an application, and detect errors of incorrect object usage. Other
purposes traditionally served by programming language types — object definition and

creation — are discussed in the next chapter.

Chapter 4

Objects

Emerald is designed around a single uniform model of object. This chapter discusses
that model, and the rather unique mechanism used in Emerald for object definition and

creation.

4.1 Object definition and creation

In Chapter 3 we discussed one of the roles that types serve in existing programming
languages: the specification of the interface to objects. We emphasized that the Emerald
type system is not concerned with the implementation of the objects whose interfaces it

describes. We now discuss the Emerald mechanism for defining and creating objects.
4.1.1 A bit of history

Object-based programming languages and systems have traditionally been based on the
concept of a class or type object. In Simula, each object is an instance of a class. To
create an object, the programmer first defines the class, which is a template for object
construction, and then uses a primitive language construct, the new expression, to create
an instance of the template. This same idea is found in Smalltalk. The behavior of indi-
vidual objects is defined by their class; changes to the state of the class affect the behavior
of the instance. Similarly, CLU objects are created by invoking creation operations on

clusters, which define the behavior of all their instances. On the operating system side,

93

Hydra, STAROS, and Eden all require the creation of a type object which defines the
behavior of its instances before any instances can be created.

Class based mechanisms for object definition are based on the idea of collecting the
common features of objects and defining them in one place. There are two places where
object attributes can be defined: in the class, where they are shared among all the in-
stances, or in the instances where they are private. To take a concrete example, consider
defining geometric points in 2-space. All points require operations to move themselves
and calculate their distances from other points. In addition, every point performs these
operations in the same manner. Definitions of these operations can be reasonably placed
in the class. On the other hand, the location of each point may be different, so that
information should be contained in the instances.

This class-based approach to the definition of objects has become so prevalent that
often it seems to be the only mechanism available. However, this is not the case.

In Sketchpad [Sut63] objects are created by incrementally defining their components
and attributes. Alternately, objects may be created by copying existing objects. These
copied objects may then be specialized as necessary. The SW-2 system [LH85] also defines
and creates objects without reference to classes, although they do use the term class in
describing how operations on objects may be shared (or inherited). Rather than concen-
trating on classes, these languages concentrate on the objects themselves.

In defining a distributed programming language, we had a number of concerns about

using classes to define and cause the creation of objects:

1. The operations on classes that create new objects typically have access to the “class
variables”. To implement this in a distributed environment implied that either object
creation could only be done on the machine where the class object resided, or that

the class object must be replicated. Neither alternative appealed to us.

2. The behavior of an object is determined not by the behavior of its class, but rather

by the data of its class; this data is subject to alteration. For example, in Smalltalk,

54

the + operation on small integers is typically defined to be the 4+ operation defined
by the hardware. However, this is not guaranteed. It is possible (in fact, easy)
to redefine the behavior of the 4+ operation on all the small integers in the system
by modifying the data in the Integer class object. This possibility has three major

drawbacks in a distributed system.

First, it is not possible to discover anything about the way that objects are used by
static analysis. This is because the operations of the object itself, and the objects
that use it, may be modified dynamically. This implies that all binding of operation
names to code must be done dynamically, or at least that any static binding must
be able to be re-bound when the class data changes. This has serious performance

implications, particularly in a distributed environment.

Second, as a distributed programming language, Emerald is intended to be used by
multiple users simultaneously. The security aspects of any of these users redefin-
ing addition on all the integers in the system, including those of other users, are

frightening.

Finally, Emerald is intended for the construction of distributed applications, not
for their rapid-prototyping. The ability to quickly redefine the behavior of existing
objects is not so important in this environment. In fact, since the construction of
distributed applications is more difficult than sequential ones, the language should
provide help to increase confidence that a given solution is correct. Once confidence
in the correctness of a particular object has been obtained, the language should not

allow modifications to it that may introduce errors.
4.1.2 Object constructors

For the reasons outlined in the previous section, the definition and creation of Emerald
objects is not based on the class notion. Rather, the definition and creation of an object

in Emerald is done with the object constructor introduced in Chapter 2. An object con-

95

structor defines the representation and operations of a single object as well as the active
behavior of the object. When executed, an object constructor causes the creation of a

single object.
What do we lose?

Object constructors lose some of the flexibility that class-based object creation provides.
In particular, once an object has been created it is not possible to modify its behavior.
This is not simply a restriction that we have placed on object construction, but is inherent
in the use of object constructors, or more correctly, in the abandonment of classes. Since
objects do not rely on any other “class” object for the definition of their behaviour, there
is no way to discuss the notion of changing the “class”, thereby affecting the behaviour of
the “instances”. As argued above, this flexibility is not so important — in fact, not even

desirable — in a distributed environment.
What do we gain?

Object constructors have a number of advantages over classes. First, object constructors
are cleaner. Figure 4.1 demonstrates the relationships between a directory object, and its
classes and metaclasses in Smalltalk. To create a single directory, its class must first be
created and initialized appropriately. Since Directory Class is also an object, it must also
have a class. This is Directory Metaclass, which is an instance of Metaclass itself. But
Metaclass is also an object, and therefore must have a class. At this point the Smalltalk
hierarchy loops; Metaclass is its own class. In addition, the Directory Class object is
the only instance of its class. Directory Metaclass exists solely to contain the definition
of Directory Class. In contrast, Figure 4.2 shows what is necessary when we use object
constructors to define a directory creator and one “instance”. This simplification results
from the ease in which 1-of objects may be defined in Emerald. The directory creator
object requires no class object for its existence. In fact, there isn’t even a class/instance

relationship between the directory creator and the created directory object.

o6

1-of

MetaClass

1-of

Directory Ve

MetaClass

\ / 1-of

Directory
Class

\

Directory
Instance

Figure 4.1: Smalltalk instance/class/metaclass structure

Second, object constructors may be nested. Traditional class/instance structures may
be simulated by using a two-level nesting of object constructors. Section 2.3 illustrates
the definition of a directory creator object that creates new directories in response to
invocation of its Empty operation.

Object constructors are not limited to two-level nesting; they may be nested to as
many levels as the programmer requires. In conjunction with the ability to pass abstract
types as parameters, this leads to a uniform syntax for the construction of polymorphic
object creators. For example, consider the built-in object Array. Array exports an of
operation that expects an abstract type argument, as in:

Array.of [Integer]
The result of this invocation is an object that exports an operation Create of zero argu-

ments. When Create is invoked, as in

Array.of [Integer].Create

o7

1-of
Directory /

Creator

\

Directory
Object

Figure 4.2: Emerald object/creator structure

the result is an array object, i.e., an object that exports operations like setElement, getFle-
ment, lowerbound, and upperbound.

In a similar way, one could extend the oneEntryDirectoryCreator of Figure 2.3 on page
21 to define a typed oneEntryDirectory creator creator that is parameterized by the type
of the directory entry as shown in Figure 4.3.

As a final advantage, once an object is created, it may not have its behavior modified.
This guarantees the integrity of individual objects. Once confidence has been obtained
in an object definition and objects have been created, it is not possible to modify these
objects. In addition, it is possible to analyze object constructors statically to perform op-
timizations based on their attributes and the manner in which they manipulate component

objects. This important performance optimization is discussed in Chapter 6.

4.2 Objects as types

In Section 3.6, we introduced type constructors as one method for constructing abstract
types. Abstract types are not limited to objects created using type constructors. Abstract

types include any objects conforming to the following type:

immutable type AbstractType
function getSignature — [Signature]
end AbstractType

o8

const myTypedDirectoryCreatorCreator == immutable object typedDCreatorCreator
export of
function of [ElementType : AbstractType| — [result : DirectoryCreator Type]
where
TypedDirectory == type TypedDirectory
operation Add[String, ElementType]
operation Lookup[String] — [ElementType]
function Delete[String]
end TypedDirectory
DirectoryCreatorType == type T
operation Empty — [result : TypedDirectory)
end T
end where
result < object typedDirectoryCreator
export empty
operation Empty — [result : TypedDirectory|
result < object oneEntryDirectory

end oneEntryDirectory
end Empty
end typedDirectoryCreator
end of
end typedDCreatorCreator

Figure 4.3: A typed directory creator creator

For example, if we add the following function definition to Figure 2.3,
function getSignature — [result : Signature]

result < Directory
end getSignature

we may use oneFntryDirectoryCreator as an abstract type. We may now write

var aDirectory: myDirectoryCreator
aDirectory < myDirectoryCreator. Empty

rather than

var aDirectory : Directory
aDirectory < myDirectoryCreator. Empty

99

Given the dual role of myDirectoryCreator, we see that it may have been appropriate to
give it a less descriptive name.

A better example may be seen by examining how we may augment the definition of our
typedDirectory CreatorCreator in Figure 4.3 to take advantage of the ability to use arbitrary
objects as abstract types. Suppose we would like to create a directory into which we may
insert only MailBoxes. We may do so by declaring:

const mailBozDirectory == myTypedDirectoryCreatorCreator.of [MailBoz)

Since mailBoxDirectory is a constant we may allow the compiler to infer its type, thus
saving us from doing it. But now suppose we actually require a variable that should
reference mailBoxzDirectories. Emerald requires that the type of variables be explicitly
provided, therefore we are forced to declare the type:

const MailBoxDirectoryType == type MailBoxDirectory Type
operation Add[String, MailBox]
operation Lookup[String] — [MailBox)]
function Delete[String)

end MailBoxDirectory Type

This allows us to declare our variable and use it in the following manner:

var mailBoxDirectory : MailBoxDirectoryType

mailBoxDirectory < myTypedDirectoryCreatorCreator.of [MailBoz]. Empty

MailBozDirectory is exactly the type we would obtain by substituting MailBoz for FEle-
mentType in the declaration of TypedDirectory in the where clause of the operation of. In
fact, in determining the type of the result of

my TypedDirectoryCreatorCreator.of [MailBoz|. Empty

the type system must perform exactly that substitution. We may take advantage of the
work that the type system performs by adding a getSignature operation to the object
returned by the of invocation on myTypedDirectoryCreatorCreator. The result of doing
this (and changing the name as suggested above) is shown in Figure 4.4. We may now

declare and initialize mailBozDirectory as follows:

60

const TypedDirectory == immutable object TypedDirectory
export of
function of [ElementType : AbstractType| — [result : DirectoryCreator Type]
where
TypedDirectory == type TypedDirectory
operation Add[String, ElementType]
operation Lookup[String] — [ElementType]
function Delete[String]
end TypedDirectory
DirectoryCreator Type == immutable type T
function getSignature — [Signature]
operation Empty — [result : TypedDirectory)
end T
end where
result < object typedDirectoryCreator
export getSignature, Empty
function getSignature — [the Type : Signature]
the Type < DirectoryCreator Type
end getSignature
operation Empty — [result : TypedDirectory]
result < object oneEntryDirectory

end oneEntryDirectory
end Empty
end typedDirectoryCreator
end of
end TypedDirectory

Figure 4.4: TypedDirectory with getSignature
var mailBoxDirectory : TypedDirectory.of [MailBoz)

mailBoxDirectory < TypedDirectory.of [MailBox]. Empty

We previously stated that the abstract type of every identifier in Emerald must be man-
ifest. The expression TypedDirectory.of [MailBoz] is manifest since the target (TypedDi-
rectory) is immutable, the operation (of) is a function, the argument (MailBoz) is im-
mutable, and the body of the operation is sufficiently simple. The expression can therefore
be evaluated by the compiler.

Similarly, the primitive object Array has been defined in such a manner that the

61

object returned by the of operation may be used as an abstract type. This allows us to

write

var a: Array.of [Integer]
a < Array.of [Integer].create

Chapter 5

Other Features of Emerald

There are several other areas of the Emerald design in which either our single object
model or our distributed target environment or both have affected our design choices.
This chapter examines these features of Emerald in an effort to more fully understand the
impact that supporting a single object model in a distributed environment has on other

aspects of the language design.

5.1 Location dependent operations

Emerald is designed for the construction of distributed applications. As previously stated,
we believe that objects are an excellent way of structuring such programs because they
provide the units of processing and distribution. This belief has been confirmed by our
experience with distributed applications in both Eden [AH84, AH85, ABBWS84, Bla85]
and Emerald.

The tendency of many distributed systems is to hide distribution from the programmer.
For example, in Xerox RPC [BN84], remote procedure calls were added to Cedar Mesa. In
so far as it was possible, remote procedure calls were designed to be semantically identical
to local procedure calls. This is obviously a desirable property and is what makes RPC so
attractive; programs can be written and debugged on a single node using local procedures

and then easily distributed.

63

Emerald supports the same notion with object invocation. All objects are manipulated
through invocation, and all invocations are location independent; it is the responsibility of
the run-time system to locate and transfer control to the target object. Remote invocation
achieves the same benefits as remote procedure call.

Some distributed systems, recognizing the utility of location-independent operation
invocation (or message passing) have proposed that all location dependent decisions should
be made by the system [All83]. They attempt to present the programmer with the model
of a centralized system, hiding from him the fact that it is implemented on distributed

hardware. In fact, Tanenbaum and van Renesse [TvR85] state:

A distributed operating system is one that looks to its users like an ordinary
centralized operating system but runs on multiple, independent central pro-
cessing units (CPUs). The key concept here is transparency. In other words,

the use of multiple processors should be invisible (transparent) to the user.

While it is crucial that invocation be location independent, or that distribution be
transparent with respect to invocation, it is not necessary that an object’s location be
invisible. Many applications may choose to ignore distribution, but others may wish
to benefit from location dependence. For example, a replication manager may wish to
distribute object replicas on different nodes, or two applications may wish to be co-located
during periods of high communication. Applications that are concerned with distribution
may wish to discover and modify objects’ locations, but they still benefit from location-
independent invocation.

We can gain some insight into the proper role of location-independence by looking
again at virtual memory. A virtual memory system provides referential transparency —
access to memory words is independent of their current placement in the physical memory
hierarchy. This is a desirable property. Some virtual memory systems completely hide
the physical memory hierarchy from the user, while others have recognized that there

are times when a programmer can exercise control over it to his advantage. An example

64

is the provision for virtual memory control through the vadvise and mmap primitives
in UNIX™. In fact Mach [Ras86], the latest in a series of virtual memory operating
systems that includes RIG and Accent, has allowed the user more control over virtual
memory management that any of its predecessors. Of course, referential transparency is
not sacrificed, and system defaults mean that a programmer not desiring to deal with
virtual memory management is not required to.

For these reasons, the Emerald language includes a small number of location primitives.
Basic to these primitives are node objects, which are the logical location entities in the

system, and are abstractions of physical machines. An object can:

Locate an object, i.e., determine on what node it resides.

Move an object to another location.

Fiz an object at a particular node, which may involve moving it there first.

Unfiz an object, i.e., make it movable following a fiz.

Refiz an object, i.e., atomically unfix and then move and fix an object in a new

place.

In all cases, location is specified through a reference to a target object; the location thus

described is the node on which the target currently exists.

5.2 Call by move

The choice of parameter passing semantics is crucial to both remote procedure call and ob-
ject invocation. In an object-based system, the obvious choice is call-by-object-reference.
Since the value of a variable is a reference to an object, it is that reference (the object
name) that is passed in an invocation. This is the same semantics as in CLU (where it is

called call by sharing) and Smalltalk. In a distributed system, this presents a potentially

65

serious performance problem; any invocation by a remotely invoked object of its parame-
ters is likely to cause another remote invocation. For this reason, systems such as Argus
have required that parameters to remote calls be passed by value, not by reference [HL82].

Because Emerald objects are mobile, it may be possible to avoid many remote ref-
erences by moving parameter objects to the site of the callee. Whether or not this is
worthwhile depends on the size of the parameter object, the number of active invocations,
and the number of invocations to be issued by the called object. We expect that param-
eter objects will be moved in two cases. First, based on compile-time information, the
Emerald compiler may decide to move an object along with an invocation. For example,
small immutable objects may be copied cheaply and are obvious candidates. Second, the
programmer may decide that an object should be moved based on knowledge about the
application. To make this possible, Emerald provides a parameter passing mode that we
call call-by-move. A call-by-move parameter is passed by reference, as is any other param-
eter, but at the time of the call it is relocated to the destination site. Following the call
it may be specified to either return to the point of call or remain on the destination site.

Call-by-move is a convenience and a performance optimization. The move could be
done explicitly with the move primitive, but that would require more explicit code and
would not allow packaging of parameter objects in the same message as the invocation.
While call-by-move co-locates the parameter with the target object, it increases the cost
of the call and may cause extra remote references from the call’s initiator.

One goal of the Emerald design is to provide a framework within which object mobility
may be studied. The results of our investigations into inexpensive object mobility and

call-by-move are reported in [Jul87].

5.3 Reliability and availability

Reliability and availability are two closely related problems that significantly complicate

the construction of distributed applications. Reliability is defined to be 1 minus the

66

probability of lost data due to hardware or software failures. Availability is defined to
be 1 minus the probability that access to a particular piece of data will be denied due to
failures.

A number of languages and systems have addressed the issues of reliability and avail-
ability in distributed computer systems. These include the language Argus [Lis84] and the
operating system Clouds [All83], each of which provide atomic transactions at the lowest
layer in the system, and the ISIS system [Bir85] which supports replication by means of a
family of broadcast protocols with increasingly strong ordering constraints.

Neither reliability nor availability were goals of the Emerald design. Therefore, Emer-
ald provides very primitive features to application programmers interested in highly reli-

able or available applications.

Reliability
The checkpoint primitive of Emerald allows a collection of objects on a single ma-
chine to atomically save their state. The semantics of checkpoint is similar to that in
Eden [Bla85]; the primary difference is that where in Eden checkpoint was specified
procedurally (the programmer explicitly wrote all the interesting data to a check-
point file) in Emerald the data to checkpoint is specified declaratively (with attached
declarations). When a node recovers after a failure, all checkpointed objects will be
restored by the kernel to the state of their most recent checkpoint. After the state
of all objects has been restored, the recovery code of the objects is executed, which

allows programmer defined recovery actions to occur.

Availability
Two Emerald features provide primitive support for the construction of available
software systems. First, the status of the nodes that make up the Emerald system
is available through operations on Node objects. This provides information a “repli-
cation manager” could use in deciding where replicas should be placed. Second,

unavailability handlers provide a mechanism for detecting when invoked objects are

67

unavailable due to failures. When an invocation or location dependent operation is
attempted on an object that is not available due to a node failure, the invocation is

aborted and the unavailable handler of the enclosing block is executed if it exists.

While these features are very low level, they form a sufficient basis for the construction of

higher-level transaction and replication schemes [Pu86).

5.4 Protection

There are two protection related issues. The first is the possibility that some malfunction-
ing process or object will corrupt the environment in ways that affect properly function-
ing objects. Operating systems typically provide protection from corruption of this kind
through the use of address spaces. In Emerald, rather than adopt this “heavy-weight”
solution, we have adopted the Concurrent Pascal philosophy [BH77|, which states that
new program pieces added on top of old ones must not be able to make the latter fail.
Even though all Emerald objects on a node share an address-space, the compiler and run-
time system provide the initialization and run-time checks necessary to guarantee that no
Emerald programmer can corrupt memory.

The second issue concerns the protection of resources from unauthorized access. A
number of object-based operating systems have been capability based [Lev84]. Capabilities
are a protection scheme that moves the responsibility for protection from the system to
the application programmer. Each object is allowed (even expected) to apply private
interpretation to a set of rights bits in the capabilities used to access it.

In the presence of objects implementing more than one abstraction, which our abstract
type system encourages, the assignment of meaning to the rights in a capability can be
difficult. The interpretation that an object will make of the rights bits in the capabili-
ties used to address it is part of its interface, and therefore must be determined by the
abstract type. However, the number of rights bits in each capability is limited, usually

severely (Eden capabilities have 16 rights bits). An object attempting to implement two

68

abstractions that assign different meanings to the same bit is unable to separate the two.
Section 8.2 discusses one extension of the abstract type system to the area of protection

that we are currently investigating.

5.5 Concurrency

With the Emerald focus on a single uniform object model, the question arises: what
about processes? Distributed applications must be able to create multiple threads of
control: how is this to be done? Our solution is the same as that in STAROS, Argus, and
Eden — processes are contained in objects and cannot be directly referenced. Processes
communicate and synchronize through shared objects.

Each object has an optional process which is started after the object is initialized upon
its creation. Within a single object, multiple operation invocations can be in progress
simultaneously, and these can execute in parallel with the object’s internal process. To
control access to variables shared by different operations, the shared variables and the
operations manipulating them can be defined within a monitor [Hoa74, BH79]. Processes
synchronize through built-in condition objects. An object’s process executes outside of

the monitor, but can invoke monitored operations should it need access to shared state.

5.6 Summary

The last three chapters have discussed the features of Emerald that make it appropriate for
the construction of distributed applications. These features include its novel type system,
the way that objects are constructed, and its distribution, reliability and concurrency
related features. The following chapters discuss the other claim that we made for Emerald:
that it can be efficiently implemented in a distributed environment.

We discuss the approach that we have taken to providing an efficient implementation

in Chapter 6, and provide performance measurements and discussion in Chapter 7.

Chapter 6

The Cost of Abstraction

We stated previously that the major goal of Emerald was to design a distributed program-
ming language that incorporates a single, uniform object model and can be implemented
efficiently. In attempting to meet this goal, we are forced to address a fundamental trade-
off between abstraction and efficiency. Traditionally, the cost of a language construct is
directly related to its expressive power: low-level abstractions can be implemented at low
cost, constructs providing more powerful abstractions have a higher cost.

A common approach to this tradeoff is to limit the expressive power of languages by
providing only constructs that have an obvious and efficient implementation. This is the

motivation for the condition variable as proposed by Hoare [Hoa74|, who admits that:

The synchronization facility which is easiest to use is probably the conditional

wait:
wait(B);

where B is a general Boolean expression, but this may be too inefficient for

general use in operating systems ...

The condition variable is primitive so that it can be implemented efficiently. This same
argument explains the existence of two models of computation in each of the distributed

programming languages and systems discussed in Chapter 1. The cost of the language

70

constructs for local objects is low — appropriate for the restricted generality that these
objects provide. The language constructs for distributed objects are more expensive due
to their increased generality and functionality.

An alternative to limiting the power of the supported abstractions is used in the
programming languages NIL [SH84] and SETL [SSS81]. Both of these languages support
an abstract data model. NIL provides a relation primitive type. Each relation contains
a variable number of rows, each row being a user-defined n-tuple of values. This relation
type is very expressive, and subsumes arrays, linked lists, sets, queues, stacks, etc. The
programming language SETL provides sets, tuples, and maps of arbitrary element types
as primitive data types.

In each of these languages, the programmer is encouraged to use these abstract data
types for constructing his application. The default implementation of these abstractions
is not efficient, but these systems provide either manual, semi-automatic, or automatic
means of choosing more efficient implementations of the abstract data types used in a
program.

In Emerald, we have recognized the expressive power of a single uniform model of
computation and have therefore provided an abstract object model and an abstract type
system. Objects may be referenced in a uniform manner independent of their location
even though they may move at arbitrary times. The type system captures the interface
to objects but conveys no implementation information.

As in NIL and SETL, the responsibility for providing an efficient implementation for
these abstract entities rests with the compiler. Emerald objects can be implemented in
a general way that preserves the full generality of the abstraction. Therefore, as in NIL
and SETL, a correct implementation of a program can be easily generated by using this
most general implementation for all of the objects created or manipulated by the program.
The criteria on which the compiler bases its decision of which implementation should be

used varies between the languages. In NIL and SETL the selection of an implementation

71

for a particular object is determined by the semantics of its data type. For example, the
selection may be based on the ratio of modification and inspection operations performed
on the object, the domain and range types of a relation, and whether a relation is one-
to-one. In Emerald, the expressive power is not in the semantics of particular data types
but rather in the semantics of objects themselves. The selection of implementation for an
object is based on what is known about the object and how it is manipulated.

The abstraction power of Emerald comes from two sources:

1. The single object model which unifies private, local objects and shared, global ob-

jects.

2. The abstract type system, which unifies all objects implementing an abstract inter-

face.

These features simplify the construction of applications by allowing the programmer to
define each object only once. A single directory description can be used both for network-
wide file system members and for a private compiler symbol table. While the object
model and type system are very general, no application requires this full generality for
every object that it uses. Objects are often used in restricted ways. If a compiler can
detect that the full power of an abstraction is not required, it can provide a more efficient

implementation.

6.1 Getting rid of abstract types

As is discussed in Chapter 3, Emerald supports two notions of type. Abstract types
capture the interface to objects but not their implementation; these are declared for every
identifier in Emerald and form the basis for type checking. Objects are created using
object constructors; the code generated by the compiler for an object constructor forms
the concrete type of the objects created by executing it. In general, only the abstract type

of object references and invocation targets are known to the compiler. Optimizations are

72

possible when the concrete types of object references and invocation targets are known
at compile time. When the concrete type of an object reference is determined statically,
the compiler knows that no run-time searching will ever be required in response to an
invocation. Therefore, the data structures that support this run-time search (such as
operation vectors [BHJ*87] or caches [CPL83]) need not be allocated or maintained for
this reference. When the concrete type of an invocation target is statically determined,
the run-time search can be eliminated and a simple jump to a compiler-determined code
address substituted in its place.

It is impossible to know the concrete type of every object reference. In fact, one
motivation for supporting abstract types was to allow the addition of newly defined objects
to an existing system. Clearly, “old” objects are unable to know the concrete type of “new”
objects that were defined after them. However, not every object reference requires this
generality. Consider the Directory example in Figure 6.1. Assuming that aode.empty
always returns an object with the same concrete type, we can determine at compile time
the concrete type of the constant state and take advantage of this when generating code
for its invocations.

Some primitive abstract types are constrained to have only one implementation or con-
crete type — an implementation provided by the system. The reasons for this restriction

are twofold:

1. As is discussed in Section 3.5.4, an Emerald abstract type captures the interface to
objects, but does not define the semantics of these objects. The correct functioning
of some language constructs depends on the semantics of objects implementing a
particular abstract type. For example, the types Boolean, Condition, Node,
Signature, and Time are intimately related to if statements, monitors, object
location, type checking, and the real-time related operations of the language. The
only way that these language constructs can guarantee the semantics of the objects

that they manipulate is to force the use of a particular implementation. Therefore,

73

const DirectoryCreator == immutable object DirectoryCreator
export empty
operation empty — [aNewDirectory : Directory]
aNewDirectory < object aDirectory
export Lookup, Add, Delete
const DirectoryElement ==
record DirectoryFElement
var name : String
var obj : Any
end DirectoryElement
const aode == Array.of [DirectoryElement]
monitor
const state == aode.empty
function Lookup[name : String] — [0 : Any]
var de : DirectoryElement
var i : Integer
i < state.lowerbound
loop
exit when i > state.upperbound
de + state.getElement]i]
if de.getName = name then
0 + de.getObj
exit
end if
11+ 1
end loop
end Lookup
operation Add[name : String, o : Any]

end Add
operation Delete[name : String]

end Delete
end monitor
end aDirectory
end empty
end DirectoryCreator

Figure 6.1: Directory

74

these types may not be reimplemented.

2. To provide an efficient base set of types from which others may be constructed, the
type may be constrained to be primitive. The types Character, Integer, Real,

String, and Vector are examples.
6.1.1 Determining concrete types

The optimizations that we may perform when concrete types are determined at compile
time include more space-efficient storage of object references for identifiers and improved
code for invocations. Therefore, our algorithm for concrete type determination must
be able to deduce the concrete types of object identifiers (constants and variables) and
expressions used as invocation targets. Clearly, the concrete type of a variable or constant
identifier is determined by the concrete types of the expressions assigned to it. Therefore,
determining concrete types involves figuring out the concrete types of expressions and
propagating this information to identifiers to which they are assigned.

There are two kinds of expression in Emerald. First are primitive expressions such as
built in operators (== which decides if two object references refer to the same object and
locate which finds the current location of an object), execution of object constructors,
and the various forms of literals. These expressions are implemented by the system, and
the concrete type of the object returned is therefore known.

The second kind of expression is an operation invocation. Determining the concrete
type of the result of an invocation requires that the compiler examine the code that
implements the operation. This implies that the concrete type of the invocation target
must be known, otherwise the code that will execute in response to an invocation request
cannot be known. In addition, the concrete type of the result returned by that operation
must also be known. There are two situations where the concrete type of this result may
be known.

In the simplest case, the invocation could always return an object of the same concrete

75

object aRecord
export getThing, setThing
var thing : Any
operation setThing[theThing : Any]
thing < theThing
end setThing
function getThing — [theThing : Any]
theThing < thing
end getThing
end aRecord

Figure 6.2: A record-like object

type. An example is the invocation of the empty operation on the DirectoryCreator of
Figure 6.1. The body of this operation simply returns a reference to a newly created
directory object. In this case, the concrete type of the expression is simply the concrete
type of the returned object.

Second, the concrete type of an invocation result may depend on the concrete types of
the arguments to this or some other operation on the object. As an example of this case,
consider the declaration of a record-like object in Figure 6.2. The concrete type of the
result of get Thing operations on aRecord depends on the concrete types of the arguments to
the setThing operations. Our currently implemented algorithm does not attempt to detect
the concrete types of such invocation results. We defer until Section 6.3 the discussion of

a better algorithm which could.
6.1.2 The concrete type determination algorithm

The previous discussion demonstrates how the concrete type of identifiers and expressions
in Emerald depends on the concrete types of other expressions. The basic notion of the
concrete type determination algorithm is therefore to construct a directed graph whose
vertices represent identifiers (variables and constants), and expressions. An edge from
a vertex a to a vertex b indicates that the concrete type of a depends on that of b.

Specifically, we traverse the program parse tree to build a directed graph G = {V, E},

76

where each edge (a,b) € E indicates that the concrete type of a depends on that of b. A
vertex is created in V' for each identifier definition node (constant and variable), invocation
node, and expression node in the original program tree. Each vertex may be marked with

one of three marks:

Undefined

The concrete type of this vertex has not yet been considered.

Unknown

The concrete type of this vertex cannot be determined by the algorithm.

Known

The concrete type of the vertex is known, and is marked in the vertex.
Depending on the kind of node encountered, add edges to the graph G:
Assignment statement (i < e):

Constant declaration (const i == e):

Variable declaration with initialization (var i : ¢ < e):

All of these are assignments of e to i, therefore we add an edge from i to e.

Invocation (t.opnamelay,...,a,)):
Add an edge from the vertex representing the invocation to the vertex representing

the target of the invocation ().

To illustrate the graph creation process, consider the example Emerald program in
Figure 6.3. This program results in the construction of the graph in Figure 6.4. Each
assignment statement results in the addition of a single edge to the graph.

The heart of the analysis phase is an algorithm that detects the strongly-connected
components of a directed graph. A strongly-connected component of a directed graph G

= {V, E} is a maximal set of vertices V' C V such that for every pair of vertices <u, v>

7

var z, y, 2z . Any

z < object objectl --- end objectl
y < object object? --- end object?
2z

T < z
YT

Figure 6.3: Concrete type determination example

Figure 6.4: Concrete type determination example — dependency graph

€ V', there exists a path in G from u to v and from v to u. In other words, there is a
path from every vertex in a strongly-connected component to every other vertex in the
strongly-connected component. In terms of detecting concrete types, such a strongly-
connected component is a set of expressions whose concrete types depend on each other,
and therefore must all be the same.

We propagate information backwards along the edges of the graph using an algorithm
[AHUT74, pp. 189-195] that finds the strongly-connected components of a graph. This
algorithm finds strongly-connected components of G in “leaf to root” order. “Leaf to
root” order implies that, if an edge (a,b) exists in G, then a depends on b, and therefore
the component containing b will be presented either before the one containing a (if @ and
b are not in the same strongly-connected component) or at the same time as a (if they

are in the same strongly-connected component). From the example in Figure 6.4, the

78

strongly-connected components are:
e objectl
e object2
® I,z
*y

This is also a valid ordering, since the prerequisites of each vertex are presented before
any vertex that depends on it. Other valid orderings are also possible.

As each strongly-connected component is produced, we determine the concrete type of
each vertex in the set depending on the kind of node that vertex represents. As the
vertices representing concrete types of the prerequisites of a vertex are considered, a
mark of undefined implies that the prerequisite vertex is in the same strongly-connected
component as this one, and therefore will have the same concrete type. We therefore
look at the vertices in each set as it is discovered by the strongly-connected components
algorithm and attempt to find a concrete type that can be assigned to all vertices in
the set. For each vertex we compute a concrete type based on the prerequisites of that
vertex. If any prerequisite of a vertex is marked unknown, then the result concrete type

is unknown. Otherwise:

Identifier node (e.g., z, y, 2):
If the concrete types of the prerequisites are all the same or undefined, then the
result concrete type is that concrete type. Otherwise, the result concrete type is

unknown.

Expression node (e.g., locate ¢, ¢ == ¢):
These expressions return primitive types (Node or Boolean) as results and so we

know the result concrete type.

79

Literal node (e.g., “a string”, 2, object ... end):
Literal nodes are leaves of the graph, and therefore the result concrete type is obvi-

ous.

Result of an invocation node (e.g., t.opnamelay,...,ay]):
If the concrete type of the invocation target is unknown, then the concrete type of
the result is also unknown. Otherwise, if executing the invocation always returns
the same concrete type, C, then C is the result concrete type. Otherwise, the result

concrete type is unknown.

If the result concrete types of every vertex in the set are the same, then mark each vertex
in the set as known with that concrete type. Otherwise, mark each vertex in the set as
unknown.

Looking at the example, the concrete types of object! and object? are trivially computed
(let us call them ct! and ct2), and these expression nodes marked as known with those two
concrete types. When looking at the set of vertices {z, 2z}, we find that these identifiers
only depend on each other and the object constructor object1, therefore both these vertices
may be marked known with concrete type ct1. When looking at y, we find that it depends
on object2 (with concrete type ct2) and z (with concrete type ctl). We therefore conclude
that we do not know the concrete type of y, and mark it unknown.

The execution time of this algorithm is linear in the size of the program.
e A single pass is made over the parse tree to construct the graph.

e The number of vertices in the graph is limited by the number of constants, variables,

expressions, and invocations in the original program.

e The number of edges in the graph is similarly limited by the number of statements
and expressions in the program, since each programming language construct con-

tributes no more than 1 edge.

80

e The worst case (and average case) running time of the algorithm to propagate in-

formation along the edges of the graph is O(Maz(|V |, |E|)) [AHUT74, pp. 189-195].

6.2 Making objects local

Important optimizations are also possible when the Emerald compiler can determine that
objects are local to some containing object. In general, the implementation of Emerald
objects must allow them to be moved at arbitrary times, and code generated to invoke
an object must take into consideration the possibility that the object will not be on the
same node as the invoker. When it is known at compile time that an object will always

be local, we may perform the following optimizations:

e We may use a location dependent pointer to it (a real address), rather than a location
independent reference. This saves both space for the pointer and access time when

performing invocations on the object.

e We may generate code for invocations that assumes that the object is resident on this

machine; no check of residency must be done before proceeding with an invocation.

e We may compile operations on the object in-line. This is not possible for arbitrary
objects since the object may move during the execution of the operation, and arbi-
trary primitive operations (e.g., instance variable access and assignment) cannot be
performed remotely. In order to perform this optimization, we must also know the

concrete type of the object.

Since objects that are declared by the programmer to be immutable may be freely
copied when references are sent across machine boundaries, we know that immutable
objects will always be resident. Therefore, we may perform the same optimizations on
them as we do for objects that we know are local to some containing object.

For an example, consider the directory implementation in Figure 6.1 on page 73. This

directory has a constant state which is initialized to be an empty array of DirectoryFle-

81

ments. In principle, nothing prevents the state array from being moved to some other node
in the network or exported as the result of some invocation on the directory. However, in
this example, the array state is completely local to its containing directory — no references
are exported, moreover, it isn’t moved. Since the state object is not remotely accessed
and does not move independently of its containing object, the compiler is free to provide
a more efficient implementation — one that cannot be remotely accessed or moved. Note
that we are not restricting what the programmer may do with his objects: we are taking

advantage of what the programmer chooses not to do with them.
6.2.1 Determining locality

The determination of local objects is similar to the determination of concrete types de-
scribed in Section 6.1.1. Again, we are interested in the locality of object references for
identifiers (allowing us to create more space-efficient objects), and the locality of invocation
targets (to generate improved code for invocations). The concrete type of an expression
is not affected by operations performed on the object it denotes, but may be determined
solely from the concrete types of its sub-expressions. Object locality on the other hand
is affected by actions performed on it (such as moving it) or identifiers to which it may
be assigned. In other words, while concrete type information flows only one way on as-
signments (the concrete type of the expression affects the concrete type of the identifier
to which it is assigned), locality information flows both ways (moves of the identifier or
expression affect the locality of both). In addition, before it can known that an object
is local, the compiler must know its concrete type. Any object may move itself, give out
references to itself as the results of invocations, and in other ways prevent the compiler
from using a local implementation for it. When we use a local implementation for an
object, we must know that it does none of these things. Therefore, we attempt to detect
the locality of objects only after concrete types have been determined.

In detecting which Emerald objects are local, we therefore must find objects that are

created and manipulated purely locally, and whose concrete types do not do things that

82

make them non-local. Again the most complicated task is determining the locality of
invocation results. There are two cases to consider.

In the simple case, the invocation returns a reference to a newly created object. The
locality of this object depends on its concrete type (what it does to itself) and how the
object is manipulated. No additional dependencies are required.

The more difficult case corresponds to the more complicated case for determining
concrete types, when the locality of an invocation result depends on the locality of the
arguments to this or some other invocation on the object. Consider again the record-
like object of Figure 6.2. The locality of the result of a getThing invocation depends on
the locality of the arguments to the putThing invocations executed on this object. Our
implemented algorithm does not detect such potentially local invocation results. Section

6.3 discusses this further.
6.2.2 The local object determination algorithm

An algorithm similar to the one used to determine the concrete type of object references
detects whether objects are local to their containing objects. In constructing the graph,
almost every edge (a,b) added to the graph in the previous algorithm is accompanied,
when detecting locals, by the reverse edge (b,a). The marks on the vertices are also

slightly different:
Undefined

The locality of this vertex has not yet been considered.

Nonlocal

This vertex represents a non-local object.

Local

The vertex represents a local object.

In addition, the actions performed in each step, dependent on the kind of parse tree node

that the vertex represents, are different. Specifically:

83

Assignment statement (i < e):
Constant declaration (const i == e):

Variable declaration with initialization (var i : ¢ < e):
All of these include an assignment of e to i, therefore add edges from i to e and from

e to 1.

Result of an invocation (t.opnamelay,...,a,]):
If the concrete type of the target of the invocation is known, and the invocation
causes the creation and return of a new object then do nothing. Otherwise, mark

the vertex nonlocal.

Move, fix, unfix, refix statement:
Since performing one of these operations on an object forces us to use the most gen-

eral implementation, mark the vertex representing the operand expression nonlocal.

The algorithm of Section 6.1.2 is used to detect the strongly-connected components of
the dependency graph. The vertices that form a strongly-connected component may be

marked local only if all three of the following conditions hold:
1. All prerequisite vertices are marked local.

2. The concrete type of the vertices is known. Since each edge added in determin-
ing concrete types is also included when detecting locals, the concrete types of all

prerequisites will be the same if it is known.

3. That concrete type neither moves (or fixes or refixes) itself nor returns a reference

to itself from any invocation.

If these conditions hold, then the vertices in the strongly-connected component are marked

local; otherwise, they are nonlocal.

84

6.3 A better algorithm

The algorithms just presented for determining the concrete types and locality of objects do
not attempt to discover anything about the results of any but the most trivial invocations.
As mentioned in Sections 6.1.1 and 6.2.1, there are cases when the attributes (concrete
type or locality) of an invocation result depend on the attributes of the arguments to other
invocations on the object. Consider again the record-like object from Figure 6.2.

object aRecord
export getThing, setThing
var thing : Any
operation setThing[theThing : Any]
thing < theThing
end setThing
function getThing — [theThing : Any]
theThing < thing
end getThing
end aRecord

The attributes of the result of get Thing operations on aRecord depend on the attributes of
the arguments to the setThing invocations performed on it. In fact, to deduce something
about the attributes of the result of a getThing operation, the compiler must have available
information about the attributes of the argument to every putThing invocation executed
on this object. This implies that the compiler must be able to find all invocations on this
object. This is only possible when the scope of references to the object is limited, or in
other words, when the object is used only locally. The locality determination algorithm
just presented finds exactly these references, and can therefore be used to provide this
information. Unfortunately, we have seen that determining locality also depends on con-
crete type determination. These two algorithms must be applied together to determine
the concrete type of the results of invocations that depend on the arguments to other
invocations on the object. There are two possible ways to combine these algorithms.
First, we could apply the concrete type and locality determination algorithms iter-
atively, stopping when no progress is made. It is easy to construct artificial situations

where the concrete type of a depends on the locality of b which depends on the locality

85

of a which depends on the concrete type of a. Such circular dependencies cannot be re-
solved by iterative application of these algorithms. On the other hand, our preliminary
experience shows that such situations do not often occur in real programs.

Second, we could build a graph that contained vertices representing both the concrete
types and locality of program constructs and use the strongly-connected components al-
gorithm to discover an evaluation order. This combined graph is much larger than the two
separate graphs. Since the attributes of an invocation result may depend on the attributes
of any argument to the invocation, we must add edges from every invocation node to every
argument. If we knew the concrete type of the target when constructing the graph how-
ever, we would only add edges to arguments that affect the attributes of the result. This
greatly expands the size of the dependency graph, and the size of the strongly-connected
components. In addition, the analysis of each strongly connected component when discov-
ered in the graph is more complicated. We can have situations where the concrete types
and locality of a number of identifiers are all mutually dependent. Much more complicated
algorithms must be developed to sort out such situations.

Statistics on the success of our currently implemented algorithm, an algorithm that
could determine the attributes of invocation results as hinted to above, and a perfect
algorithm are presented in Section 7.3. These statistics show that our current simple
algorithm performs almost as well in practical situations as the better algorithms just

outlined.

6.4 Discussion

In contrast to languages that have restricted their expressive power to constructs that
have obvious efficient implementations, or have two or more user-visible constructs with
different power and implementations, Emerald has a very general object model and an
abstract type system. The responsibility for implementing objects efficiently (relative to

the generality required by each object) rests with the compiler. We have discussed the

86

algorithms used by the compiler to detect situations where the full generality of the object
model and type system are not required, and outlined alternative approaches that lead to

better algorithms.

Chapter 7

Performance

Two major goals drove the design of Emerald. The first was that Emerald should support
a uniform object model suitable for the construction of both local and distributed objects
with identical semantics. We were unwilling to compromise this goal for any reason.
Second, we intended that the performance of objects should be appropriate to the uses to
which they are put. This chapter discusses the performance goals of Emerald and provides
measurements to substantiate our claim that these performance goals have been met. In
addition, we discuss the primary factors affecting the performance of Emerald objects and

compare Emerald performance to that of similar systems.

7.1 Performance goals

In designing Emerald, we anticipated three categories of objects:

Primitive objects
Primitive objects include characters, integers, reals, and Booleans. Since these ob-
jects are small and immutable they can be freely copied rather than shared and
accessed through pointers. Therefore, we expect that they should be allocated di-
rectly in the data areas of objects that reference them and manipulated by in-line
code invoking hardware operations. They should be as efficient as primitive objects

(values of primitive types) in any other programming language.

88

Local objects
Some objects are used in ways that make them local to some containing object. Such
objects should have a minimal amount of storage overhead and operations invoked
on them should have performance comparable to the cost of a procedure call in a

traditional programming language.

Global objects
When the full generality of objects is used, we are willing to pay more in both storage
overhead and time for operation invocation. However, even though objects in this
category have the potential to be on other machines requiring network communi-
cation for operation invocation, we expect that a significant fraction of invocations
will be on objects that are currently co-located with their invoker. For this reason,

we have two goals for global object invocation:

e When the target of an invocation is on the same machine as its invoker (resident)

the invocation time should approach procedure call time.

e When an invocation target is on a different machine from its invoker (non-
resident) invocation involves the run-time kernel and network communication.
In such cases, the invocation time will be orders of magnitude greater than invo-
cation times for invocations on the same machine. Our goal is to perform these
remote invocations in time not much worse than the network overhead required
to send and receive the messages. The performance of remote invocations is
determined by the communications hardware in addition to the operating sys-
tem upon which Emerald is implemented as well as the structure of Emerald’s
run-time kernel. The performance of global invocations is not reported here,

but can be found in Eric Jul’s dissertation [Jul87].

The Emerald object model was designed with these three categories of implementa-

tion in mind. We expect to achieve the performance of direct code for primitive objects,

89

procedure calls for local objects, and remote procedure calls for non-resident global ob-
jects. Our expectation of near procedure call performance for resident global objects was
ambitious. Typically, potentially remote objects are managed exclusively by the run-time
kernel of a distributed system. Therefore, invocations of such objects typically involve
significantly more machinery, and therefore more expense, than do invocations on objects

known to be local.

7.2 Emerald performance

The current prototype of Emerald is implemented on a local network of DEC™
MicroVAX ™ II workstations running the ULTRIX"™™ operating system. The only impact
that using ULTRIX as a prototyping environment has on these performance measures
relates to stack bounds checking. All Emerald objects on a machine execute in a single
address space. Translated into ULTRIX terms, an Emerald node is an ULTRIX process.
Within this address space, the Emerald kernel manages multiple Emerald processes, each
requiring its own stack. Since ULTRIX does not allow page-by-page memory management
control, each Emerald invocation includes an explicit stack check to detect when a process
has exhausted its current stack allocation.

Table 7.1 shows the performance of a number of primitive operations on the MicroVax
II. These provide a basis against which the performance of Emerald operations may be

measured. Table 7.2 shows the time taken by invocations in Emerald.

Primitive Time
Operation (microseconds)
integer addition 0.4
real addition 3.4
procedure call/return 13.4
procedure call/return with stack check 16.4

Table 7.1: MicroVax II primitive operation times

90

Emerald Example Time
Operation (microseconds)
primitive integer invocation i+ 1423 0.4
primitive real invocation X+ x + 23.0 3.4
local invocation localobject.nop 16.6
resident global invocation)
(known concrete type) globalobject.nop 19.4
ident global i ti
resicient globat Imvoeation globalobject.nop 23.1

(unknown concrete type)

Table 7.2: Timings of Emerald invocations

7.2.1 Discussion

We feel that these performance measures are very good. In fact, except for micro-
optimizations, better performance cannot be realized given our hardware. Invocations
on direct objects are compiled into native code for the machine. Invocations on local
objects are compiled into a procedure call sequence with efficiency comparable to that
of the procedure call instructions on the machine. The most surprising statistic is the
performance of resident global objects. The overhead for invocation of Emerald objects
implemented in the most general manner but currently on the same machine as the invoker
is less than 50% of the procedure call time. In other distributed systems, invocation of an
object on the same machine requires milliseconds (Clouds [Spa86]), or tens of milliseconds
(Eden [ABLNS5], ISIS [BJRAS85]). This high cost of invocations on potentially remote

objects stems from 2 factors:

1. Resolving the reference used to perform the invocation. Global objects are usually
referenced with location-independent names or capabilities. These must be resolved

before checking the location of the invoked object.

2. Crossing a protection boundary. Each object is a separate protection domain; only

code defined by the object itself is allowed to manipulate its representation. When

91

an invocation is performed, the access rights must be checked, and the representation
must become available for direct access. A significant fraction of the cost of a resident

invocation in Clouds is related to performing this mapping [Spa86].

Since the Emerald compiler provides the protection necessary to ensure that the represen-
tation of object cannot be corrupted, all Emerald objects on a machine may safely share
the same address space. Emerald also optimizes for the local case, since it is expected to
be most common. Location dependent references (real pointers to descriptors) are used,
even for global objects, allowing the compiled code access to information concerning the
object. Invocation is done by building an activation record on the caller’s stack, checking
to see if the target object is resident, and if so, executing the invocation without any kernel
calls. If the residency check fails, the kernel is called to transmit the activation record to

the target machine and perform the invocation there.

7.3 Concrete type and locality determination

Chapter 6 discusses the optimizations performed by the Emerald compiler based on
compile-time determination of the concrete type and locality of objects. The perfor-
mance figures in Table 7.2 indicate that when the concrete type of a reference is known
at compile time that a 16 percent reduction in invocation time results. When an object is
known to be local, the reduction in invocation time increases to 28 percent. In addition,
when an object is known to be local, the compiler is allowed to do procedure integration,
or expand the body of the invoked operation in place of the invocation sequence. This has
the potential of removing the invocation overhead completely, at the expense (usually)
of expanded object code size. Invocations of global objects may not be expanded inline
since they have the potential to move at any time. These improvements indicate that
detection of situations where either the concrete type or the locality of a reference can be

determined at compile time is important to the performance of the Emerald system.

92

7.3.1 Success of our algorithm

The fraction of references for which concrete type or locality information can be determined
at compile time varies with the application. We have analyzed the performance of our
algorithm (as currently implemented in the compiler), on a collection of object definitions
comprising the Emerald mail system.

Table 7.3 summarizes the results of our analysis. It presents the static count of invoca-
tions generated by type for three detection algorithms when executed on the mail system

itself (not including the user interface objects). These three algorithms are:

e A perfect algorithm — one that could detect every situation where an object is used

in restricted ways.

e No detection — the only optimizations are those made available because of the

primitive types which may have only one implementation.
e The algorithm currently implemented in the compiler.

The column labeled A shows the difference between the perfect algorithm and the others.

Perfect algorithm | No detection | Implemented algorithm
Invocation Type Number A Number | A | Number A

total 595 - 595 - 595 -
inlined 451 - 412 1 -39 451 -
local 59 - 0] -59 99 -
self 7 - 7 - 7 -
immutable 14 - 14 - 14 -
global 64 - 162 | +98 64 -
known concrete type 557 - 464 | -93 543 -14
unknown concrete type 38 - 131 | +93 52 +14

Table 7.3: Performance of three detection algorithms — mail system

Without concrete type and local object detection, 98 invocations that could be opti-

93

Perfect algorithm | No detection | Implemented algorithm
Invocation Type Number A Number | A | Number A

total 345 - 345 - 345 -
inlined 211 - 211 - 211 -
local 0 - 0 - 0 -
self 24 - 24 - 24 -
immutable 0 - 0 - 0 -
global 110 - 110 - 110 -
known concrete type 321 - 243 | -78 321 -
unknown concrete type 24 - 102 | +78 24 -

Table 7.4: Performance of three detection algorithms — user interface

mized to either inlined operations or local procedure calls remain with the most general
implementation. The currently implemented algorithm detects all 98 of these potential
optimizations. The only things left undetected by the current implementation are the 14
invocations on immutable objects. A perfect algorithm could detect the concrete types
of these invocations. The better algorithms described in Section 6.3 could also determine
these 14 concrete types. The remaining 64 global invocations (38 of which are to objects
where the concrete type are not known) are actually required by the application. The se-
mantics of the mail system requires the generality of these remaining invocations to allow
for multiple implementations of the mailbox, mailmessage, and directory abstractions.

Table 7.4 presents these same statistics for the objects comprising the mail system user-
interface. The user interface to the mail system is heavily biased by its input/output re-
lated invocations on the standard input and output streams. Invocations on these streams
are global, since the streams are fixed on particular machines (the one where the display
is), and the interface objects may be moved arbitrarily. In this example, the implemented
algorithm performs as well as a perfect algorithm would.

The overall static and dynamic behavior of the implemented algorithm on the mail
system can be seen in Table 7.5. The dynamic measures are the result of sending and

later reading ten short mail messages.

94

Static Dynamic
Invocation Type Number | % | Number | %
total 940 | 100.0 4429 | 100.0
inlined 662 | 70.4 2995 | 67.6
local 59 6.3 306 6.9
self 31 3.3 277 6.3
immutable 14 1.5 75 1.7
global 174 | 18.5 776 | 17.5
known concrete type 864 | 91.9 4121 | 93.0
unknown concrete type 76 8.1 308 7.0

Table 7.5: Overall frequency of invocations by type

Both statically and dynamically, over 2/3 of invocations are primitive and generate
machine instructions. Of the remaining 1/3, an additional 11-15% (local, self, and im-
mutable invocations in the table) are implemented as procedure calls, since it is known at
compile time that the target will be on the same machine as the invoker. Only 18% of all
invocations require an invocation sequence capable of dealing with objects that may be
resident on other machines.

The high frequency of input/output related invocations in the mail system user inter-
face objects skews this information somewhat. Table 7.6 presents this same information
removing the invocations on the standard input and output streams. If we discount the
effect of the Input/Output related operations of the mail system, we find that only 11.2%
of invocations statically or 6.5% of invocations dynamically are on global objects. We
may also see that only approximately 8% of invocations actually use the flexibility of the

abstract type system.
7.3.2 Discussion

While our currently implemented algorithm for the detection of concrete type and local-
ity information is successful in determining the attributes of only very simple invocation

results, they perform very well in actual situations, capturing almost all of the concrete

95

Static Dynamic
Invocation Type Number | % | Number | %
total 863 | 100.0 3907 | 100.0
inlined 662 | 76.7 2995 | 76.7
local 59 6.8 306 7.8
self 31 3.6 277 7.1
immutable 14 1.6 75 1.9
global 97 | 11.2 254 6.5
known concrete type 787 | 91.9 3599 | 92.1
unknown concrete type 76 8.1 308 7.9

Table 7.6: Frequency of invocations by type — discounting input/output

type and locality information that can be found in the mail system application. Their cur-
rent major flaw lies in their inability to propagate concrete type and locality information
through “record-like” objects — records, vectors, and arrays. The more sophisticated algo-
rithms outlined in Section 6.3 could perform this propagation, at the expense of increased

compilation cost.

7.4 Summary

A major criticism of object-based programming languages and systems is that they are
inefficient. Our purpose in discussing the performance of the current implementation of
Emerald is not to brag about shaving off a microsecond here or there. We have, rather,
wished to demonstrate that the use of an object-based language — even in a distributed
computing environment — is not an inherent source of inefficiency. While the Emerald
model of mobile objects viewed through loose-fitting abstract types is very general, it can
be implemented efficiently; our current implementation is a proof by construction. Much
can be done to allow the luxury of a general model, while only paying for that generality

actually used in an application.

Chapter 8

Conclusion

We have addressed the problem of constructing application programs for execution in a
distributed environment. In a distributed environment, there are two natural implemen-
tation styles available. The more expensive style is appropriate for entities that are to
be remotely accessed or moved. Private data within such a remotely accessible entity
may use a much simpler, more efficient implementation style. The performance difference
between the two styles can be as high as a factor of 1000; an operation that can be done in
microseconds on a local object may require milliseconds to perform on a remote object. A
number of programming languages and operating systems have also addressed the prob-
lem of constructing distributed applications. These languages and systems have reflected
the semantic and performance differences between local and remote computation in the
models of computation that they support. Each of them provide two levels of support: one
whose semantics and performance are appropriate for the construction of private entities,
the other appropriate for distributed entities that may be shared and remotely accessed.

The programming language Emerald provides a single model of computation, the ob-
ject, which is appropriate for constructing objects at all levels of a distributed system.
Primitive objects such as integers and characters, local data objects such as records and
arrays, and distributed objects such as files, directories, and compilers are defined in a

uniform way. As in existing systems, there are multiple implementation styles that may

97

be used for each object; the task of providing an implementation whose cost is appropriate

to the generality required by individual objects is given to the compiler.

8.1 Contributions

This dissertation has presented a number of significant contributions. First, we have
demonstrated that a single object model can be defined that is appropriate for the con-
struction of every object in a distributed system. A language that incorporates such a
single object model has been designed and implemented.

Second, we have designed and implemented a type system that completely separates
specification from implementation, treats types as first class objects, and provides poly-
morphism in a simple and straightforward manner. To our knowledge, no type system
incorporating all of these features has previously been defined or implemented.

Third, we have recognized two instances of the general principle that very abstract
models can be implemented at no cost when not actually used by an application. The
definition of the Emerald object model implies that in the most general case nothing
about the implementation or location of a target object may be known when compiling
code for invocations. This generality of the object model and type system provides the
flexibility necessary for the construction of some distributed applications (such as the
directory system). On the other hand, in most instances, objects do not require the full
generality of either the object model or the type system, and the compiler can generate
much improved code by detecting these situations.

These three contributions are not entirely independent. Our original purpose in de-
signing Emerald was to investigate the possibility of a language where a single, uniform
model was used for the construction of both local and distributed objects. The evolution
of the type system and the compiler techniques for detecting situations where the full
power of an abstraction is not required followed from that goal. In fact, the type system

could not divorce itself from concerns about implementation unless there was some other

98

feature (the object model) that provided representation independence. In addition, the
compiler techniques to detect the use of limited abstractions would not be appropriate
unless a single, general abstraction was available. On the other hand, these contributions
are also important independently. A type system that allows multiple implementations
of an abstraction to co-exist may be useful in an environment other than distributed ob-
jects. Compiler techniques to detect situations where only limited generality is used in a

program have application to more than just object-based programming.

8.2 Further research

The design and implementation of the Emerald programming language has demonstrated
the validity of the thesis that a uniform object model can be efficiently implemented in a
distributed environment. This work has also brought to our attention areas where further

work is required.
The cost of abstraction

The Emerald programming language is based on the philosophy of providing a simple high
level abstraction, and relying on the system for its efficient implementation. A similar
philosophy can be seen in the design of the SETL and NIL programming languages. Two

questions remain to be answered:

e This principle has previously been applied to programming languages (with the
advent of high level languages to replace machine code), and operating systems
memory hierarchies (with virtual memory replacing explicit overlays). In both these
cases, and in our case as well, the preliminary response to these proposals is that the
cost would be exorbitant. Can this model be applied to other aspects of programming

language or operating system design?

e We have taken this principle to its limit. There is no mechanism in Emerald by

which a programmer my relate to the compiler his knowledge (or belief) that a

99

certain object is used in restricted ways and thus should be a candidate for an op-
timized implementation. We have previously criticized two other instances where
designers have gone two far in favor of abstraction: the design of distributed systems
that completely hide distribution from the programmer, and the design of virtual
memory systems that completely hide the memory hierarchy. How should informa-
tion that a programmer knows about the nature of his application be communicated
to the compiler? When is it appropriate to allow programmer involvement in the

implementation of an abstraction, and when is it not?
The type system

We noted in Section 3.5.4 that the Emerald type system relies heavily on the names cho-
sen for operations, with the result that types could either conform accidentally when they
should not or not conform when they should based solely on the names chosen for oper-
ations rather than on the semantics of these operations. We suspect that these problems
could both be resolved, and that Emerald could be more suitable for the construction of
verified software, if a type definition included semantic information as well as syntactic
information. If a type definition was a formal specification of the objects that it described
then the conformity algorithm would be able to compare two types based on their formal
specification rather than the syntax of their operation signatures. We suspect that such a
type system would provide a basis in which object definitions would be routinely formally

proven to match their specifications.
Protection

One interesting feature of the Emerald implementation is the tight coupling of the com-
piler and operating system. The Emerald compiler takes responsibility for tasks that
traditionally belong to the operating system (such as protection from faulty programs),
and leaves to the operating system tasks that traditionally are the compiler’s (such as the

handling of illegal dereferences of nil and performing remote invocations). This principle

100

may be extended to compiler provided security as is mentioned in Section 5.4.

Object-based operating systems have often used capabilities to provide security. Ca-
pabilities are protected object references containing access rights; the invocation of an
operation on an object requires a particular access right in the capability used to name
the object. In the face of the multiple inheritance that Emerald’s abstract type system
encourages, the assignment of abstract access rights to concrete bits in the capabilities is
very difficult, probably impossible [Bla85].

However, abstract types as defined in Emerald have a number of similarities with ca-
pabilities [Lev84]. Invoking an operation on an object referenced by an Emerald constant
or variable requires the abstract type of the reference to include the requested operation.
As defined in Chapter 3, the widening of Emerald abstract types (to include more op-
erations) is restricted only by the operations that the object actually implements. If it
were possible to prohibit the widening of particular references to objects, the security of
capabilities could be provided by the type system. We are currently investigating this

possibility.
Accommodating heterogeneity

We have assumed throughout the design and implementation of Emerald a very homoge-
neous system: the processors in the system must all be identical. Since such homogeneous
environments rarely occur in practice, it seems natural to extend Emerald to execute in a
heterogeneous system.

The accommodation of multiple machine types could be handled (conceptually) quite
simply. The data area of each object is fully described by run-time descriptors in order
to support garbage collection and translation when objects are moved. If this information
was expanded slightly (to mark data that does not require attention when moving between
homogeneous processors, but which may need to change representation when moving be-
tween heterogeneous processors), it could be used to change representation when moving

an object from a machine of one type to one of another type. Also, when object descrip-

101

tions are compiled, machine code must be generated for each machine type in the system;

this could also be done as needed rather than all at once.
Exploiting parallel hardware

Emerald was designed for the construction of application programs to execute in a loosely
coupled network of uniprocessors. The ever-decreasing cost of processors that led to the
feasibility of such distributed systems is now leading to very affordable multiprocessors.
We are now investigating whether Emerald is an appropriate language for the programming

of such multiprocessor machines.
Use of the language

The design of the Emerald programming language relies heavily on experience gained
with the design, implementation, and use of the Eden distributed operating system and
the Eden Programming Language. While the object model of Emerald is very similar
to that of Eden, Emerald and Eden are different, and the appropriateness of Emerald as
a language for the construction of distributed applications can only be measured after
applications have been constructed using it. Therefore, while preliminary experience in
the use of the language by its authors and a few other interested bystanders has been
favorable, its use by a wider spectrum of programmers for a wider variety of applications
is necessary before we can substantiate our claim that Emerald simplifies the construction

of distributed applications.

8.3 Summary

The construction of application programs to execute on distributed hardware is a difficult
task. The Emerald programming language simplifies this task by providing a single ab-
straction model — the object — that may be used to define both local and distributed
entities. Since all objects are defined using the same mechanism and have the same se-

mantics, an application can be developed using local objects and then distributed without

102

changes to the definitions of the objects used.

Although all objects have the same semantics and are defined using the same object
model, it is not the case that they all have the same implementation. The Emerald com-
piler detects situations where the full generality of the object or type system abstraction
is not required for a particular object, and provides an improved implemenation. In this
way, one can have a very general model, but only pay for the generality actually used in

an application.

Bibliography

[ABBW84] Guy T. Almes, Andrew P. Black, Carl Bunje, and Douglas Wiebe. Edmas: A

[ABLNS5]

[Ada83]

[AH84]

[AHS5]

[AHUT74]

[A1183]

[And82]

[BHT77]
[BHT7S]

[BHT79]

locally distributed mail system. In Proceedings of the Seventh International
Conference on Software Engineering, Orlando, Florida, March 1984.

Guy T. Almes, Andrew P. Black, Edward D. Lazowska, and Jerre D. Noe.
The Eden System: A Technical Review. IFEEE Transactions on Software
Engineering, SE-11(1):43-59, January 1985.

Reference Manual for the Ada Programming Language, January 1983.
ANSI/MIL-STD-1815A.

Guy Almes and Cara Holman. Edmas: An object oriented locally distributed
mail system. Technical Report 84-08-03, Department of Computer Science,
University of Washington, Seattle, Washington, December 1984.

Guy Almes and Cara Holman. The eden shared calendar system. Technical
Report 85-05-02, Department of Computer Science, University of Washington,
Seattle, Washington, June 1985.

Alfred V. Aho, John E. Hopcroft, and Jeffery D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

James E. Allchin. An Architecture for Reliable Decentralized Systems. PhD
thesis, Georgia Institute of Technology, Atlanta Georgia, September 1983.
Also: Technical Report GIT-ICS-83/23, Georgia Institue of Technology.

G. R. Andrews. The distributed programming language SR — mechanisms,
design and implementation. Software — Practise and Experience, 12(8):719—
754, August 82.

Per Brinch Hansen. The Architecture of Concurrent Programming. Prentice
Hall Series in Automatic Computation. Prentice Hall, 1977.

Per Brinch Hansen. Distributed processes: A concurrent programming con-
cept. Communications of the ACM, 21(11):934-941, November 1978.

Per Brinch Hansen. The programming language Concurrent Pascal. [EEE
Transactions on Software Engineering, 1(5):50-56, May 1979.

[BHJ*87]

[BHJLS6]

[BHM?77]

[Bir85)]

[BJRAS5)]

[Blag5)

[BN84]

[BRV84]

[Car86]

[CMMST79)

[CooT9]

[CPL83]

104

Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter.
Distribution and abstract types in Emerald. IEEE Transactions on Software

Engineering, 13(1), January 1987. Also Technical Report 86-02-04, Depart-
ment of Computer Science, University of Washington.

Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object struc-
ture in the Emerald system. In Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages and Applications, pages 78-86.
ACM, October 1986. Also Technical Report 86-04-03, Department of Com-
puter Science, University of Washington, revised June 1986; Published in
SIGPLAN Notices, vol. 21, no. 11, November 1986.

Forest Baskett, John H. Howard, and John T. Montague. Task communica-
tion in DEMOS. In Proceedings of the Sizth ACM Symposium on Operating
Systems Principles, pages 23-31. ACM, November 77.

Kenneth P. Birman. Replication and fault-tolerance in the ISIS system. In
Proceedings of the Tenth ACM Symposium on Operating System Principles,
pages 79-86. ACM, December 1985.

K.P. Birman, T.A. Joseph, T. Raeuchle, and A.E. Abbadi. Implementing
fault-tolerant distributed objects. IEEE Transactions on Software Engineer-
ing, SE-11(6):502-508, June 1985.

Andrew P. Black. Supporting distributed applications: Experience with Eden.
In Proceedings of the Tenth ACM Symposium on Operating System Principles,
pages 181-93. ACM, December 1985.

Andrew D. Birrell and Bruce J. Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1):39-59, February 1984.

F. Baiardi, L. Ricci, and M. Vanneschi. Static checking of interprocess com-
munication in ECSP. In Proceedings of the 1984 Symposium on Compiler
Construction, pages 290-299. ACM SIGPLAN, June 1984. In ACM SIG-
PLAN Notices 19:6.

Luca Cardelli. A polymorphic lambda-calculus with type:type. Technical
Report 10, Digital System Research Center, 130 Lytton Avenue, Palo Alto,
CA 94301, May 1986.

David R. Cheriton, Michael A. Malcolm, Lawrence S. Melen, and Gary R.
Sager. Thoth, a portable real-time operating system. Communications of the
ACM, 22(2):105-115, February 1979.

Robert P. Cook. xMod — a language for distributed programming. In Proceed-
ings of the First International Conference on Distributed Computing Systems,
pages 233-241. IEEE, October 1979.

Thomas J. Conroy and Eduardo Peligri-Llopart. As assessment of method-
lookup caches for Smalltalk-80 implementations. In Glenn Krasner, editor,
Smalltalk-80: Bits of History, Words of Advice, chapter 13, pages 239-247.
Addison-Wesley, 1983.

[CW85]

[C7Z83]

[DD7Y]

[DD85]
[Fel79]

[GCKWT9]

[GR83]

[GSWS6]

[HL82]

[Hoa74]
[HoaT78]

[JID+79)

[TR86]

[Jul87]

105

Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. Computing Surveys, 17(4):471-522, December 1985.

David R. Cheriton and Willy Zwaenepoel. The Distributed V kernel and
its performance for diskless workstations. In Proceedings of the Ninth ACM
Symposium on Operating Systems Principles, pages 129-140. ACM, October
1983.

A. Demers and J. Donahue. Revised report on russell. Technical Report
TR 79-389, Department of Computer Science, Cornell University, September
1979.

James Donahue and Alan Demers. Data types are values. ACM Transactions
on Programming Languages and Systems, 7(3):426-445, July 1985.

Jerome A. Feldman. High level programming for distributed computing. Com-
munications of the ACM, 22(6):353-368, June 1979.

D. I. Good, R. M. Cohen, and J. Keeton-Williams. Princples of proving
concurrent programs in gypsy. In Proceedings of the Sizth Symposium on
Principles of Programming Languages, pages 42-52. ACM, January 1979.

Adele Goldberg and David Robson. Smalltalk-80: the language and its imple-
mentation. Addison-Wesley Publishing Company, 1983.

Irene Greif, Robert Seliger, and William Weihl. Atomic data abstractions in
a distributed collaborative editing system. In Proceedings of the Thirteenth
Symposium on Principles of Programming Languages. ACM, January 1986.

M. Herlihy and B. Liskov. A value transmission method for abstract data
types. Transactions on Programming Languages and Systems, 4(4):527-551,
October 1982.

C. A. R. Hoare. Monitors: An operating system structuring concept. Com-
munications of the ACM, 17(10):549-557, October 1974.

C.A.R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666-677, August 1978.

A. K. Jones, R. J. Chansler Jr., I. Durham, K. Schwans, and S. R. Vegdahl.
StarOS, a multiprocessor operating system for the support of task forces. In
Proceedings of the Seventh ACM Symposium on Operating System Principles,
pages 117-127. ACM, December 1979.

Michael B. Jones and Richard F. Rashid. Mach and matchmaker: Kernel and
language support for object-oriented distributed systems. In Proceedings of the
First ACM Conference on Object-Oriented Programming Systems, Languages
and Applications, pages 67-77. ACM, September 1986.

Eric Jul. Object Mobility in Emerald. PhD thesis, Department of Computer
Science, University of Washington, Seattle, Washington, 1987. In preparation.

[LAB+79)

[Lev84]

[LGFRS2]

[LHS85]

[LHL+77]

[Lis84]

[LSAST77]

[May83]
[MMS79]

[Nel81]

[PM83]

[Pus86)]

[Ras86]

[RRS1]

106

Barbara Liskov, Russ Atkinson, Toby Bloom, Eliot Moss, Craig Schaffert,
Bob Scheifler, and Alan Snyder. CLU reference manual. Technical Report
MIT/LCS/TR-225, Massachusetts Institute of Technology, Laboratory for
Computer Science, October 1979.

Henry M. Levy. Capability-Based Computer Systems. Digital Press, Bedford,
MA, 1984.

Keith A. Lantz, Klaus D. Gradischnig, Jerome A. Feldman, and Richard F.
Rashid. Rochester’s intelligent gateway. IEEE Computer, 15(10):54-68, Oc-
tober 1982.

Mark R. Laff and Brent Hailpern. Sw 2 - an object-based programming en-
vironment. In SIGPLAN 85 Symposium on Language Issues in Programming
Environments, pages 1-11. ACM, July 1985.

B. Lampson, J. Horning, R. London, J. Mitchell, and G. Popek. Report on
the programming language EUCLID. SIGPLAN Notices, 112(2), 1977.

Barbara Liskov. Overview of the argus language and system. Program-
ming Methodology Group Memo 40, M.I.T. Laboratory for Computer Science,
February 1984.

Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert. Ab-
straction mechanisms in CLU. Communications of the ACM, 20(8):564-576,
August 1977.

D. May. OCCAM. ACM SIGPLAN Notices, 18(4):69-79, April 1983.

James G. Mitchell, William Maybury, and Richard Sweet. Mesa language
manual. Technical Report CSL-79-3, Xerox Palo Alto Research Center, April
1979.

Bruce Jay Nelson. Remote procedure call. Technical Report CSL-81-9, Xerox
Palo Alto Research Center, May 1981.

Michael L. Powell and Barton P. Miller. Process migration in DEMOS/MP. In
Proceedings of the Ninth ACM Symposium on Operating Systems Principles,
pages 110-119. ACM, October 1983.

Calton Pu. Replication and Nested Transactions in the Eden Distributed Sys-
tem. PhD thesis, Department of Computer Science, University of Washington,
Seattle, Washington, August 1986. Also Technical Report 86-08-02, Depart-
ment of Computer Science, University of Washington.

Richard F. Rashid. From RIG to Accent to Mach: The evolution of a network
operating system. Computer Science Department, Carnegie-Mellon Univer-
sity, May 1986.

Richard F. Rashid and George G. Robertson. Accent: A communication
oriented network operating systems kernel. In Proceedings of the Eighth ACM
Symposium on Operating Systems Principles, pages 64-75. ACM, October
1981.

[Sco86]

[SCWS85]

[SH84]

[Spa86]

[SSS81]

[Sut63]

[SY83]

[TvRS5]

[WCCH74]

[Wir77]

[WLS76]

107

Michael L. Scott. The interface between distributed operating system and
high-level programming language. In Proceedings of the 1986 International
Conference on Paralled Processing, St. Charles, IL, August 1986.

Craig Schaffert, Topher Cooper, and Carrie Wilpolt. Owl reference man-
ual. Technical report, Eastern Research Lab, Digital Equipment Corporation,
Hudson, Massachusetts, February 1985.

Robert Strom and Nagui Halim. A new programming methodology for long-
lived software systems. IBM Journal of Reserach and Development, 28(1):52—
59, January 1984.

Eugene H. Spafford. Kernel Structures for a Distributed Operating System.
PhD thesis, School of Information and Computer Science, Georgia Institute
of Technology, May 1986. Also Georgia Institute of Technology Technical
Report GIT-ICS-86/16.

Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. An automatic
technique for selection of data representations in SETL programs. ACM
Transactions on Programming Languages and Systems, 3(2):126-143, April
1981.

Ivan E. Sutherland. Sketchpad: A man-machine graphical communication
system. In Proceedings of the Spring Joint Computer Conference, pages 329—
346, Detroit, Michigan, May 1963.

Robert E. Strom and Shaula Yemini. NIL: An integrated language and sys-
tem for distributed programming. In Proceedings of the SIGPLAN 83 Sym-
posium on Programming Language Issues in Software Systems, pages 73-82,
San Francisco, CA, June 1983. ACM. Also SIGPLAN Notices, 18:6, June
1983.

Andrew S. Tanenbaum and Robbert van Renesse. Distributed operating sys-
tems. Computing Surveys, 17(4):419-470, December 1985.

W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pol-
lack. Hydra: The kernel of a multiprocessor operating system. Communica-
tions of the ACM, 17(6):337-345, June 1974.

Niklaus Wirth. Modula: A language for modular multiprogramming. Software
— Practice and Ezperience, 7:3-35, 1977.

William A. Wulf, Ralph L. London, and Mary Shaw. An introduction to the
construction and verification of Alphard programs. IEEE Transactions on
Software Engineering, SE-2(4):253-264, December 1976.

